TCGAbiolinks retrieved molecular subtypes information from TCGA samples. The functions PanCancerAtlas_subtypes and TCGAquery_subtype can be used to get the information tables.
While the PanCancerAtlas_subtypes function gives access to a curated table retrieved from synapse (probably with the most updated molecular subtypes) the TCGAquery_subtype function has the complete table also with sample information retrieved from the TCGA marker papers.
PanCancerAtlas_subtypes: Curated molecular subtypes.Data and description retrieved from synapse (https://www.synapse.org/#!Synapse:syn8402849)
Synapse has published a single file with all available molecular subtypes that have been described by TCGA (all tumor types and all molecular platforms), which can be accessed using the PanCancerAtlas_subtypes function as below:
subtypes <- PanCancerAtlas_subtypes()
DT::datatable(
data = subtypes,
filter = 'top',
options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),
rownames = FALSE
)The columns “Subtype_Selected” was selected as most prominent subtype classification (from the other columns)
| All available molecular data based-subtype | Selected subtype | Number of samples | Link to file | Reference | link to paper | |
|---|---|---|---|---|---|---|
| ACC | mRNA, DNAmeth, protein, miRNA, CNA, COC, C1A.C1B | DNAmeth | 91 | Link | Cancer Cell 2016 | Link |
| AML | mRNA and miRNA | mRNA | 187 | Link | NEJM 2013 | Link |
| BLCA | mRNA subtypes | mRNA | 129 | Link | Nature 2014 | Link |
| BRCA | PAM50 (mRNA) | PAM50 | 1218 | Link | Nature 2012 | Link |
| GBM/LGG* | mRNA, DNAmeth, protein, Supervised_DNAmeth | Supervised_DNAmeth | 1122 | Link | Cell 2016 | Link |
| Pan-GI (preliminary) ESCA/STAD/COAD/READ | Molecular_Subtype | Molecular_Subtype | 1011 | Link | Cancer Cell 2018 | Link |
| HNSC | mRNA, DNAmeth, RPPA, miRNA, CNA, Paradigm | mRNA | 279 | Link (TabS7.2) | Nature 2015 | Link |
| KICH | Eosinophilic | Eosinophilic | 66 | Link | Cancer Cell 2014 | Link |
| KIRC | mRNA, miRNA | mRNA | 442 | Link | Nature 2013 | Link |
| KIRP | mRNA, DNAmeth, protein, miRNA, CNA, COC | COC | 161 | Link | NEJM 2015 | Link |
| LIHC (preliminary) | mRNA, DNAmeth, protein, miRNA, CNA, Paradigma, iCluster | iCluster | 196 | Link (Table S1A) | not published | |
| LUAD | DNAmeth, iCluster | iCluster | 230 | Link (Table S7) | Nature 2014 | Link |
| LUSC | mRNA | mRNA | 178 | Link (Data file S7.5) | Nature 2012 | Link |
| OVCA | mRNA | mRNA | 489 | Link | Nature 2011 | Link |
| PCPG | mRNA, DNAmeth, protein, miRNA, CNA | mRNA | 178 | tableS2 | Cancer Cell 2017 | Link |
| PRAD | mRNA, DNAmeth, protein, miRNA, CNA, icluster, mutation/fusion | mutation/fusion | 333 | Link | Cell 2015 | Link |
| SKCM | mRNA, DNAmeth, protein, miRNA, mutation | mutation | 331 | Link (Table S1D) | Cell 2015 | Link |
| THCA | mRNA, DNAmeth, protein, miRNA, CNA, histology | mRNA | 496 | Link (Table S2 - Tab1) | Cell 2014 | Link |
| UCEC | iCluster, MSI, CNA, mRNA | iCluster - updated according to Pan-Gyne/Pathways groups | 538 | Link (datafile S1.1) | Nature 2013 | Link |
| Link | ||||||
| UCS (preliminary) | mRNA | mRNA | 57 | Link | not published |
TCGAquery_subtype: Working with molecular subtypes data.The Cancer Genome Atlas (TCGA) Research Network has reported integrated genome-wide studies of various diseases. We have added some of the subtypes defined by these report in our package:
| TCGA dataset | Link | Paper | Journal |
|---|---|---|---|
| ACC | doi:10.1016/j.ccell.2016.04.002 | Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma. | Cancer cell 2016 |
| BRCA | https://www.cell.com/cancer-cell/fulltext/S1535-6108(18)30119-3 | A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers | Cancer cell 2018 |
| BLCA | http://www.cell.com/cell/fulltext/S0092-8674(17)31056-5 | Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer Cell 2017 | |
| CHOL | http://www.sciencedirect.com/science/article/pii/S2211124717302140?via%3Dihub | Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles | Cell Reports 2017 |
| COAD | http://www.nature.com/nature/journal/v487/n7407/abs/nature11252.html | Comprehensive molecular characterization of human colon and rectal cancer | Nature 2012 |
| ESCA | https://www.nature.com/articles/nature20805 | Integrated genomic characterization of oesophageal carcinoma | Nature 2017 |
| GBM | http://dx.doi.org/10.1016/j.cell.2015.12.028 | Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma | Cell 2016 |
| HNSC | http://www.nature.com/nature/journal/v517/n7536/abs/nature14129.html | Comprehensive genomic characterization of head and neck squamous cell carcinomas | Nature 2015 |
| KICH | http://www.sciencedirect.com/science/article/pii/S1535610814003043 | The Somatic Genomic Landscape of Chromophobe Renal Cell Carcinoma | Cancer cell 2014 |
| KIRC | http://www.nature.com/nature/journal/v499/n7456/abs/nature12222.html | Comprehensive molecular characterization of clear cell renal cell carcinoma | Nature 2013 |
| KIRP | http://www.nejm.org/doi/full/10.1056/NEJMoa1505917 | Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma | NEJM 2016 |
| LIHC | http://linkinghub.elsevier.com/retrieve/pii/S0092-8674(17)30639-6 | Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma | Cell 2017 |
| LGG | http://dx.doi.org/10.1016/j.cell.2015.12.028 | Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma | Cell 2016 |
| LUAD | http://www.nature.com/nature/journal/v511/n7511/abs/nature13385.html | Comprehensive molecular profiling of lung adenocarcinoma | Nature 2014 |
| LUSC | http://www.nature.com/nature/journal/v489/n7417/abs/nature11404.html | Comprehensive genomic characterization of squamous cell lung cancers | Nature 2012 |
| PAAD | http://www.cell.com/cancer-cell/fulltext/S1535-6108(17)30299-4 | Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma | Cancer Cell 2017 |
| PCPG | http://dx.doi.org/10.1016/j.ccell.2017.01.001 | Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma | Cancer cell 2017 |
| PRAD | http://www.sciencedirect.com/science/article/pii/S0092867415013392 | The Molecular Taxonomy of Primary Prostate Cancer | Cell 2015 |
| READ | http://www.nature.com/nature/journal/v487/n7407/abs/nature11252.html | Comprehensive molecular characterization of human colon and rectal cancer | Nature 2012 |
| SARC | http://www.cell.com/cell/fulltext/S0092-8674(17)31203-5 | Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas | Cell 2017 |
| SKCM | http://www.sciencedirect.com/science/article/pii/S0092867415006340 | Genomic Classification of Cutaneous Melanoma | Cell 2015 |
| STAD | http://www.nature.com/nature/journal/v511/n7511/abs/nature13385.html | Comprehensive molecular characterization of gastric adenocarcinoma | Nature 2013 |
| THCA | http://www.sciencedirect.com/science/article/pii/S0092867414012380 | Integrated Genomic Characterization of Papillary Thyroid Carcinoma | Cell 2014 |
| UCEC | http://www.nature.com/nature/journal/v497/n7447/abs/nature12113.html | Integrated genomic characterization of endometrial carcinoma | Nature 2013 |
| UCS | http://www.cell.com/cancer-cell/fulltext/S1535-6108(17)30053-3 | Integrated Molecular Characterization of Uterine Carcinosarcoma Cancer | Cell 2017 |
| UVM | http://www.cell.com/cancer-cell/fulltext/S1535-6108(17)30295-7 | Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma | Cancer Cell 2017 |
These subtypes will be automatically added in the summarizedExperiment object through GDCprepare. But you can also use the TCGAquery_subtype function to retrieve this information.
## lgg subtype information from:doi:10.1016/j.cell.2015.12.028
A subset of the LGG subytpe is shown below:
## R version 4.5.1 Patched (2025-08-23 r88802)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.3 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.22-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 LAPACK version 3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] grid stats4 stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] maftools_2.26.0 jpeg_0.1-11
## [3] png_0.1-8 DT_0.34.0
## [5] dplyr_1.1.4 SummarizedExperiment_1.40.0
## [7] Biobase_2.70.0 GenomicRanges_1.62.0
## [9] Seqinfo_1.0.0 IRanges_2.44.0
## [11] S4Vectors_0.48.0 BiocGenerics_0.56.0
## [13] generics_0.1.4 MatrixGenerics_1.22.0
## [15] matrixStats_1.5.0 TCGAbiolinks_2.38.0
## [17] testthat_3.2.3
##
## loaded via a namespace (and not attached):
## [1] RColorBrewer_1.1-3 rstudioapi_0.17.1
## [3] jsonlite_2.0.0 magrittr_2.0.4
## [5] GenomicFeatures_1.62.0 farver_2.1.2
## [7] rmarkdown_2.30 BiocIO_1.20.0
## [9] fs_1.6.6 vctrs_0.6.5
## [11] Rsamtools_2.26.0 memoise_2.0.1
## [13] RCurl_1.98-1.17 htmltools_0.5.8.1
## [15] S4Arrays_1.10.0 usethis_3.2.1
## [17] progress_1.2.3 curl_7.0.0
## [19] SparseArray_1.10.0 sass_0.4.10
## [21] bslib_0.9.0 htmlwidgets_1.6.4
## [23] desc_1.4.3 fontawesome_0.5.3
## [25] plyr_1.8.9 httr2_1.2.1
## [27] cachem_1.1.0 GenomicAlignments_1.46.0
## [29] lifecycle_1.0.4 pkgconfig_2.0.3
## [31] Matrix_1.7-4 R6_2.6.1
## [33] fastmap_1.2.0 digest_0.6.37
## [35] ShortRead_1.68.0 AnnotationDbi_1.72.0
## [37] ps_1.9.1 rprojroot_2.1.1
## [39] pkgload_1.4.1 crosstalk_1.2.2
## [41] RSQLite_2.4.3 hwriter_1.3.2.1
## [43] filelock_1.0.3 httr_1.4.7
## [45] abind_1.4-8 compiler_4.5.1
## [47] remotes_2.5.0 bit64_4.6.0-1
## [49] withr_3.0.2 downloader_0.4.1
## [51] S7_0.2.0 BiocParallel_1.44.0
## [53] DBI_1.2.3 pkgbuild_1.4.8
## [55] R.utils_2.13.0 biomaRt_2.66.0
## [57] rappdirs_0.3.3 DelayedArray_0.36.0
## [59] sessioninfo_1.2.3 rjson_0.2.23
## [61] DNAcopy_1.84.0 tools_4.5.1
## [63] chromote_0.5.1 otel_0.2.0
## [65] R.oo_1.27.1 glue_1.8.0
## [67] restfulr_0.0.16 promises_1.4.0
## [69] gtable_0.3.6 tzdb_0.5.0
## [71] R.methodsS3_1.8.2 tidyr_1.3.1
## [73] websocket_1.4.4 data.table_1.17.8
## [75] hms_1.1.4 xml2_1.4.1
## [77] XVector_0.50.0 pillar_1.11.1
## [79] stringr_1.5.2 vroom_1.6.6
## [81] later_1.4.4 splines_4.5.1
## [83] BiocFileCache_3.0.0 lattice_0.22-7
## [85] deldir_2.0-4 rtracklayer_1.70.0
## [87] aroma.light_3.40.0 survival_3.8-3
## [89] bit_4.6.0 tidyselect_1.2.1
## [91] Biostrings_2.78.0 knitr_1.50
## [93] xfun_0.54 devtools_2.4.6
## [95] brio_1.1.5 stringi_1.8.7
## [97] yaml_2.3.10 cigarillo_1.0.0
## [99] TCGAbiolinksGUI.data_1.30.0 evaluate_1.0.5
## [101] codetools_0.2-20 interp_1.1-6
## [103] EDASeq_2.44.0 archive_1.1.12
## [105] tibble_3.3.0 BiocManager_1.30.26
## [107] cli_3.6.5 processx_3.8.6
## [109] jquerylib_0.1.4 dichromat_2.0-0.1
## [111] Rcpp_1.1.0 dbplyr_2.5.1
## [113] XML_3.99-0.19 parallel_4.5.1
## [115] ellipsis_0.3.2 ggplot2_4.0.0
## [117] readr_2.1.5 blob_1.2.4
## [119] prettyunits_1.2.0 latticeExtra_0.6-31
## [121] bitops_1.0-9 pwalign_1.6.0
## [123] scales_1.4.0 purrr_1.1.0
## [125] crayon_1.5.3 BiocStyle_2.38.0
## [127] rlang_1.1.6 KEGGREST_1.50.0
## [129] rvest_1.0.5