## ----installing, eval = FALSE------------------------------------------------- # if (!requireNamespace("BiocManager", quietly = TRUE)) # install.packages("BiocManager") # # BiocManager::install("MOSim") # # # For the latest development version # install.packages("devtools") # devtools::install_github("ConesaLab/MOSim") # ## ----test_run, eval = FALSE--------------------------------------------------- # library(MOSim) # # # Create a list of omics data types (e.g., scRNA-seq and scATAC-seq) # omicsList <- sc_omicData(list("scRNA-seq", "scATAC-seq"), # data = NULL) # # # Define cell types for your experiment # cell_types <- list('Treg' = c(1:10),'cDC' = c(11:20),'CD4_TEM' = c(21:30), # 'Memory_B' = c(31:40)) # # # Load an association list containing peak IDs related to gene names # associationList <- data(associationList) # # # Simulate multi-omics data with specific parameters # testing_groups <- sc_mosim( # omicsList, # cell_types, # numberReps = 2, # numberGroups = 3, # diffGenes = list(c(0.2, 0.3), c(0.2, 0.3)), # minFC = 0.25, # maxFC = 4, # numberCells = NULL, # mean = NULL, # sd = NULL, # regulatorEffect = list(c(0.1, 0.2), c(0.1, 0.2), c(0.1, 0.2)), # associationList = associationList, # TF = FALSE # ) ## ----custom data, eval = FALSE------------------------------------------------ # # This is done to get a dataset to extract a matrix (for example purposes) # scRNA <- MOSim::sc_omicData("scRNA-seq", data = NULL) # count <- scRNA[["scRNA-seq"]] # options(Seurat.object.assay.version = "v3") # Seurat_obj <- Seurat::CreateAssayObject(counts = count, assay = 'RNA') # # To format the data into sc_mosim-ready format, we pass the seurat # # object containing the count data we extracted into sc_omicData # omic_list_user <- sc_omicData(c("scRNA-seq"), data = c(Seurat_obj)) ## ----default, eval = FALSE---------------------------------------------------- # omic_list <- sc_omicData(list("scRNA-seq")) # cell_types <- list('Treg' = c(1:10),'cDC' = c(11:20),'CD4_TEM' = c(21:30), # 'Memory_B' = c(31:40)) # # sim <- sc_mosim(omic_list, cell_types, TF = TRUE) ## ----testing, eval = FALSE---------------------------------------------------- # omic_list <- sc_omicData(c("scRNA-seq", "scATAC-seq")) # cell_types <- list('Treg' = c(1:10),'cDC' = c(11:20),'CD4_TEM' = c(21:30), # 'Memory_B' = c(31:40)) # sim <- sc_mosim(omic_list, cell_types, numberReps = 2, # numberGroups = 2, diffGenes = list(c(0.2, 0.3)), feature_no = 8000, # clusters = 3, mean = c(2*10^6, 1*10^6,2*10^6, 1*10^6), # sd = c(5*10^5, 2*10^5, 5*10^5, 2*10^5), # regulatorEffect = list(c(0.1, 0.2), c(0.1, 0.2)), TF = FALSE) ## ----settings, eval = FALSE--------------------------------------------------- # settings <- sc_omicSettings(sim) ## ----settingsTF, eval = FALSE------------------------------------------------- # settings <- sc_omicSettings(sim, TF = TRUE) ## ----results, eval = FALSE---------------------------------------------------- # res <- sc_omicResults(sim)