HTqPCR - high-throughput qPCR analysis in R and Bioconductor

Heidi Dvinge

March 31, 2025

1 Introduction

The package HTqPCR is designed for the analysis of cycle threshold (Ct) values from quantitative
real-time PCR data. The main areas of functionality comprise data import, quality assessment, nor-
malisation, data visualisation, and testing for statistical significance in Ct values between different
features (genes, miRNAs).

The example data used throughout this vignette is from from TaqMan Low Density Arrays (TLDA),
a proprietary format of Applied Biosystems, Inc. However, most functions can be applied to any kind
of qPCR data, regardless of the nature of the experimental samples and whether genes or miRNAs
were measured. Section 13 gives some examples of how to handle other types of input data, including
output formats from other qPCR assay vendors (e.g. Roche Applied Science and Bio-Rad) and data
from non-well based microfluidic systems (e.g. BioMark from Fluidigm Corporation).

> library("HTgPCR")

The package employs functions from other packages of the Bioconductor project. Dependencies include
Biobase, RColorBrewer, limma, statmod, affy and gplots.

Examples from the vignette

This vignette was developed in Sweave, so the embedded R code was compiled when the PDF was
generated, and its output produced the results and plots that appear throughout the document. The
following commands will extract all of the code from this file:

> all.R.commands <- system.file("doc", "HTqPCR.Rnw",
+ package = "HTqQPCR")
> Stangle(all.R.commands)

This will create a file called HTqPCR.R in your current working directory, and this file can then either
be sourced directly, or the commands run individually.

General workflow

The main functions and their use are outlined in Figure 1. Note that the QC plotting functions can
be used both before and after normalisation, in order to examine the quality of the data or look for
particular trends.

For the full set of available functions type:

/~ plotCtOverview

plotCtCard/plotCtArray (readCtData)
plotCtCor [Create gPCRset |<— new(‘qPCRset’, ...
plotCVBoxes changeCtLayout
plotCtVariation cbind
plotCtPCA \rbind)
_ plotCtReps .
- — setCategory
plotCtCategory]—V[Set categories [« | filterCategory)

[pIotCtBoxeA

Normalise 4—[normalizeCtData]

plotCtDensity l
plotCtHistogram
plotCtHeatmap 4—[fi|terCtData]
plotCtScatter l
plotCtPairs
\ plotGenes » QC
ttestCtData
clusterCt) [Statistical testing | mannwhitneyCtData
. limmaCtData
heatmapSig
plotCtRQ - —
p|OtCtS]gn]fiCance)_’[Data visualisation]

Figure 1: Workflow in HTqPCR analysis of qPCR data. Centre column: The main procedural steps in
a typical qPCR analysis; Left: examples of visualisation functions; Right: data analysis functions.

> 1s("package:HTqPCR")

[1] "changeCtLayout" "clusterCt"

[3] "exprs" "exprs<-"

[5] "featureCategory" "featureCategory<-"
[7] "featureClass" "featureClass<-"
[9] "featureNames" "featureNames<-"
[11] "featurePos" "featurePos<-"
[13] "featureType" "featureType<-"
[15] "filterCategory" "filterCtData"
[17] "flag" "flag<-"
[19] "getCt" "getCtHistory"
[21] "heatmapSig" "limmaCtData"
[23] "mannwhitneyCtData" "n.samples"
[25] "n.wells" "normalizeCtData"
[27] "plotCVBoxes" "plotCtArray"
[29] "plotCtBoxes" "plotCtCard"
[31] "plotCtCategory" "plotCtCor"
[33] "plotCtDensity" "plotCtHeatmap"
[35] "plotCtHistogram" "plotCtLines"
[37] "plotCtOverview" "plotCtPCA"
[39] "plotCtPairs" "plotCtRQ"
[41] "plotCtReps" "plotCtScatter"
[43] "plotCtSignificance" "plotCtVariation"
[45] "readCtData" "sampleNames"
[47] "sampleNames<-" "setCategory"
[49] "setCt<-" "setCtHistory<-"
[51] "show" "summary"
[63] "ttestCtData"

Getting help

Please send questions about HTqPCR to the Bioconductor mailing list.
See http://www.bioconductor.org/docs/maillist.html

2 qPCRset objects

The data is stored in an object of class ¢PCRset, which inherits from the eSet class from package
Biobase. eSet was originally designed for handling microarray data, but can deal with any kind of data
where the same property (e.g. qPCR of genes) is measured across a range of samples.

Two qPCRset test objects are included in the package: one containing raw data, and the other containing
processed values. An example is shown in figure 2, along with some of the functions that can typically
be used for manipulating ¢gPCRset objetcs.

http://www.bioconductor.org/docs/mailList.html

> data(gPCRraw)
> data(qPCRpros)
> class(qPCRraw)

[1] "gPCRset"
attr(,"package")
[1] ".GlobalEnv"

The format is the same for raw and normalized data, and depending on how much information is
available about the input data, the object can contain the following information:

featureNames Object of class character giving the names of the features (genes, miRNAs) used in the
experiment. This is a column in the featureData of the ¢gPCRset object (see below).

sampleNames Object of class character containing the sample names of the individual experiments.
exprs Object of class matriz containing the Ct values.

flag Object of class data.frame containing the flag for each Ct value, as supplied by the input files.
These are typically set during the calculation of Ct values, and indicate whether the results are
flagged as e.g. “Passed” or “Flagged”.

featureType Object of class character representing the different types of features on the card, such as
endogenous controls and target genes. This is a column in the featureData of the ¢PCRset object.

featurePos Object of class character representing the location "well" of a gene in case TLDA cards

are used, or some other method containing a defined spatial layout of features. Like featureType
and featureName, featurePos is found within the featureData.

featureClass Object of class factor with some meta-data about the genes, for example if it is a
transcription factor, kinase, marker for different types of cancers or similar. This is typically set
by the user, and will be located within the featureData.

featureCategory Object of class data.frame representing the quality of the measurement for each
Ct value, such as “OK”, “Undetermined” or “Unreliable”. These can be set using the function
setCategories depending on a number of parameters, such as how the Ct values are flagged,
upper and lower limits of Ct values and variations between technical and biological replicates of
the same feature.

history Object of class data.frame indicating what operations have been performed on the ¢PCRset
object, and what the parameters were. Automatically set when any of the functions on the upper
right hand side of figure 1 are called (readCtData, setCategory, filterCategory, normalizeCtData,
filterCtData, changeCtLayout, rbind, cbind).

Generally, information can be handled in the ¢PCRset using the same kind of functions as for Ezpres-
sionSet, such as exprs, featureNames and featureCategory for extracting the data, and exprs<-,
featureNames<- and featureCategory<- for replacing or modifying values. The use of exprs might
not be intuitive to users who are not used to dealing with microarray data, and hence EzxpressionSet.
The functions getCt and setCt<- that perform the same operations as exprs and exprs<- are therefore

also included. For the sake of consistency, exprs will be used throughout this vignette for accessing
the Ct values, but it can be replaced by getCt in all examples.

The overall structure of qPCRset is inherited from eSet, as shown in the example below. This is a
flexible format, which allows the used to add additional information about for example the experimental
protocol. Information about the samples is contained within the phenoData slot, and details can be
accessed of modified using pData. Likewise, for the individual features (mnRNA, miRNAs) are available
in the featureData slot, and can be accessed of modified using fData. See e.g. AnnotatedDataFrame
for details.

> slotNames (qPCRraw)

[1] "CtHistory" "assayData" "phenoData"
[4] "featureData" "experimentData" "annotation"
[7] "protocolData" ".__classVersion__"

> phenoData(qPCRraw)

An object of class 'AnnotatedDataFrame'
sampleNames: samplel sample2 ... sample6 (6 total)
varLabels: sample
varMetadata: labelDescription

> pData(gPCRraw)

sample
samplel 1
sample2 2
sample3 3
sample4 4
sampleb 5
sample6 6

> pData(qPCRraw) <- data.frame(Genotype = rep(c("A",
+ "B"), each = 3), Replicate = rep(1:3, 2))
> pData(qPCRraw)

Genotype Replicate

1 A 1
2 A 2
3 A 3
4 B 1
5 B 2
6 B 3

> featureData(qPCRraw)

An object of class 'AnnotatedDataFrame'

featureNames: 1 2 ... 384 (384 total)
varLabels: featureNames featureType featurePos
featureClass

varMetadata: labelDescription
> head(fData(qPCRraw))

featurePos
featurepos <-
flag

flag <-

exprs
exprs <-
getGt

setCt =-

show
summary
getGiHistory

> data{qP(Rraw)
> show(gPQRraw) yy

[n.wells An object wf class| "gPCRset”
TeatureNames Feature types: Endogenous Control, Target featureType <-

featureNames <- Feature names: ngel Gene2 Gened ...
Feature clas.s.es._: Kinase, Mnrk:_ar, TF featureClass <-

[featureCategory Feature categories: OK, Undetermined

featureCategory <- Sample names: samplel sample2 sample3 ... sampleNames
. sampleNames <-

Figure 2: An example of a ¢PCRset object, and some of the functions that can be used to display
and/or alter different aspects of the object, i.e. the accessor and replacement functions.

featureNames featureType featurePos featureClass
1 Genel Endogenous Control Al Kinase
2 Gene2 Target A2 Marker
3 Gene3 Target A3 Kinase
4 Gene4 Target Ad TF
5 Geneb Target A5 Marker
6 Gene6 Target A6 Marker

gPCRset objects can also be combined or reformatted in various ways (see section 12).

3 Reading in the raw data

The standard input consists of tab-delimited text files containing the Ct values for a range of genes.
Additional information, such as type of gene (e.g. target, endogenous control) or groupings of genes
into separate classes (e.g. markers, kinases) can also be read in, or supplied later.

The package comes with example input files (from Applied Biosystem’s TLDA cards), along with a text
file listing sample file names and biological conditions.

> path <- system.file("exData", package = "HTqPCR")
head(read.delim(file.path(path, "files.txt")))

File Treatment

\4

1 samplel.txt Control
2 sample2.txt LongStarve
3 sample3.txt LongStarve
4 sample4d.txt Control
5 sampleb.txt Starve
6 sample6.txt Starve

The data consist of 192 features represented twice on the array and labelled “Genel”, “Gene2”, etc.
There are three different conditions, “Control”; “Starve” and “LongStarve”, each having 2 replicates.
The input data consists of tab-delimited text files (one per sample); however, the format is likely to
vary depending on the specific platform on which the data were obtained (e.g., TLDA cards, 96-well
plates, or some other format). The only requirement is that columns containing the Ct values and
feature names are present.

> files <- read.delim(file.path(path, "files.txt"))
> raw <- readCtData(files = files$File, path = path)

The gPCRset object looks like:

> show(raw)

An object of class "qPCRset"

Size: 384 features, 6 samples

Feature types:

Feature names: Genel Gene2 Gene3 ...
Feature classes:

Feature categories: 0K, Undetermined

Sample names: samplel sample2 sample3 ...

NB: This section only deals with data presented in general data format. For notes regarding other types
of input data, see section 13. This section also briefly deals with other types of qPCR results besides
Ct data, notably the Cp values reported by the LightCycler System from Roche.

4 Data visualisation

4.1 Overview of Ct values across all groups

To get a general overview of the data the (average) Ct values for a set of features across all samples or
different condition groups can be displayed. In principle, all features in a sample might be chosen, but
to make it less cluttered Figure 3 displays only the first 10 features. The top plot was made using just
the Ct values, and shows the 95% confidence interval across replicates within and between samples. The
bottom plot represents the same values but relative to a chosen calibrator sample, here the “Control”.
Confidence intervals can also be added to the relative plot, in which case these will be calculated for
all values compared to the average of the calibrator sample per gene.

> g <- featureNames(raw) [1:10]
> plotCtOverview(raw, genes = g, xlim = c(0, 50), groups = files$Treatment,
+ conf.int = TRUE, ylim = c(0, 55))

> plotCtOverview(raw, genes = g, xlim = c(0, 50), groups = files$Treatment,
+ calibrator = "Control")

4.2 Spatial layout

When the features are organised in a particular spatial pattern, such as the 96- or 384-well plates, it
is possible to plot the Ct values or other characteristics of the features using this layout. Figure 4
shows an example of the Ct values, as well as the location of different classes of features (using random
examples here), across all the wells of a TLDA microfluidic card.

> plotCtCard(raw, col.range = c(10, 35), well.size = 2.6)

> featureClass(raw) <- factor(c("Marker", "TF", "Kinase") [sample(c(1,
+ 1, 2, 2, 1, 3), 384, replace = TRUE)])
> plotCtCard(raw, plot = "class", well.size = 2.6)

4.3 Comparison of duplicated features within samples

When a sample contains duplicate measurements for some or all features, the Ct values of these du-
plicates can be plotted against each other to measure accordance between duplicates. In Figure 5 the
duplicates in sample2 are plotted against each other, and those where the Ct values differ more than
20% from the average of a given feature are marked.

> plotCtReps(qPCRraw, card = 2, percent = 20)

Replicates differing > 20% on card 2:
repl rep2

Genel35 40.000000 29.90044

Geneld 40.000000 27.69185

2 2
=& =&
oSmn o Sn o
Eo2 Eoz
c & mw c & -nlu
38a 335
E0E E0E
g
o]
]
—
H 89499 | 89499 &
=
+~
o
n
Q
T e U —— :
99usY [FENED) =
>
+~
Gy
o
L ELED] VClED) W
&
>
1=
[
o
)
=
j=]
B
I T T T T 1 I T T 1
o o o o o o n o [To) o
o) < ® « — o o S S

sa|dwes 1o} sanfeA 1D |loiuo) dnoub 0} pasedwod oiel gho

Port 1

Port 2

Port 3

Port 4

Port 5

Port 6

Port 7

Port 8

Port 1

Port 2

Port 3

Port 4

Port 5

Port 6

Port 7

Port 8

samplel

<10 16 22 29 >35

samplel

Kinase Marker TF

Gene37 7.408248 40.00000
Gene73 40.000000 23.11949
Gene84 21.673946 40.00000
Gene86 20.389658 40.00000
Gene9 22.494440 31.39404
Gene95 15.916160 40.00000

Differences will often arise due to one of the duplicates marked as “Undetermined”, thus contributing
to an artificially high Ct value, but other known cases exist as well.

4.4 Variation within and across samples

In some cases more than two replicates are present, either within each qPCR card (feature replicates) or
across cards (replicated samples). Assessing the variation within replicates can indicate whether some
samples or individual features are less reliable, or if perhaps an entire qPCR card shows high variation
between replicate features and needs to be discarded.

plotCtVariation generates a boxplot with all the variation values, either across genes or with each
samples. That way the general distribution of variation or standard deviation values can be compared
quickly (Figure 6). In this example, the variation across samples doesn’t differ much.

> raw.mix <- raw
> plotCtVariation(raw.mix, variation = "sd", log = TRUE,
+ main = "SD of replicated features", col = "lightgrey")

If it looks like there’s an unacceptable (or interesting) difference in the variation, this can be further
investigated using the parameter type="detail". This will generate multiple sub-plots, containing a
single scatterplot of variation versus mean for each gene or sample (Figure 6). That way individual
outliers can be identified, or whole samples removed by examining the resulting variation in more detail.

> raw.variation <- plotCtVariation(raw.mix, type = "detail",
+ add.featurenames = TRUE, pch = " ", cex = 1.2)

> names (raw.variation)
[1] "Var" "Mean"

> head(raw.variation[["Var"]][, 1:4])

Group.1 samplel sample2 sample3
1 Genel 6.603053e-02 3.367143e-02 4.340261e-02
2 GenelO 6.087458e-05 2.864660e-04 1.869050e-03
3 GenelOO 1.232561e-05 7.789010e-04 4.452426e-04
4 GenelO1l 5.859356e-03 8.787857e-02 7.988004e-06
5 Genel02 6.571738e-03 7.440192e-02 2.768647e-03
6 Genel03 0.000000e+00 2.544768e-06 7.899120e-04
> head(raw.variation[["Mean"]][, 1:4])

11

Figure 5: Concordance between duplicated Ct values in sample 2, marking features differing >20%

from their mean.

15 20 25 30 35 40

10

®
rne37

® @@ e o
GenedG&wmB4

e o

i [

Gene9 0.'. .G ®

o® ROs

.o Gene

¢ ®

g Gene

10

15 20 25 30 35 40

12

W w o o wo

sampleb
.000000e+00
.466089e-04
.630107e-03
.887166e+00
.863380e-02
.328081e+02

Group.l samplel sample2 sample3

1 Genel 11.70414 11.78938 10.76248

2 GenelO 23.93387 25.92385 27.88952

3 GenelOO0 27.93282 31.92726 30.92547

4 GenelO1 27.88928 34.71769 28.93203

5 Genel02 28.91345 30.76310 28.90544

6 Genel03 40.00000 30.92895 29.90892

> apply(raw.variation[["Var"]1][, 3:7], 2, summary)
sample2 sample3 sampled

Min. 0.000000e+00 0.000000e+00 0.000000e+00

1st Qu. 3.673657e-04 7.036888e-04 3.073682e-04

Median 4.805137e-03 5.065715e-03 6.370044e-03

Mean 8.666670e+00 4.440271e+00 7.155378e+00

3rd Qu. 6.221935e-02 3.446367e-02 3.648247e-02

Max. 5.311111e+02 5.715739e+02 4.675274e+02
sample6

Min. 0.000000e+00

1st Qu. 5.975255e-04

Median 6.346025e-03

Mean 5.628291e+00

3rd Qu. 3.671908e-02

Max. 5.627668e+02

> colSums(raw.variation[["Var"]][, 3:7] > 20)

sample2 sample3 sample4 sampleb sample6

11 3 7 6 8

In the example in this section a lot of features from sample 6 have intra-replicate variation above an
arbitrary threshold selected based on Figure 6, and the mean and median values are much higher than
for the remaining samples. Sample 1 is excluded due to the page width.

Variation across Ct values is discussed further in the following section regarding filtering.

13

SD of replicated features

8 Q o g o
: : :
“ —_ — 8 8
' ' o JR > R °
' ' o '
' | | -
! ' N ' —_—)
. ' ' ' ' |
A , ' . ' .
c © 7 , ! ' ' ' '
i) ! ' I ' ' |
© ! : ! : | !
S ! ' ' ' '
(7]
o - _|
ko] |
=
(]
ko]
c
© ' "
in l ' ' N 1 l
(%)) [N ' ' ' ' ' '
o ! ' , ' ' ! 1
pml f ' ' ! ' '
] ! ! | ! \ !
o . ! ! ! | R
: ' - ' .
o _| ' ' ° ' h
I ! L ' I 8
. o ¢}
<t
[[¢]
T T T T T I
samplel sample2 sample3 sample4 sample5 sample6
samplel sample2 sample3
° Gene93 o Gene37 Gene33
37 37 o
8
g Geaeds g o |
<
c o cQ c
S8 S8 Gene9s s8]
g g g8
‘>5 f=3 f>5 o r>5
& & Genes 8
Geneg4, ~
Gene73 Gene72
S 8 S
= Gene90 - Genel4 =
Geneg Genels3s Gene51
° HGEk] CORININNEGGNGENNIRN o enel G o —gnel
T T T L T T T L T T T T
10 15 20 25 30 35 40 15 20 25 30 35 40 10 15 20 25 30 35 40
Ct value Ct value Ct value
sample4 sample5 sample6
Genel32 Gene82 Gene72
° S Gene34 3 |
€1 ° °
Gene9 2 s
o <
It -8 Gene90 -
S s® S8
st RS Gene84 g®
g2 | Genel03 53+ Gene47 8 .
g ST
R Genes3 H Genets 8 5ene93 6eped!
8 Chi 3
%@%@%&O gﬁane%
©-jneGenel CROMENEGEGEGSNENANE < pnel cosmuAmmaeenRE 0 - 0o anaii
T T — 11T T T T T T T T T T
10 15 20 25 30 35 40 10 15 20 25 30 35 40 10 15
Ct value Ct value

Figure 6: (Top) summary of standard deviation between replicated features within each of the six
samples. (Bottom) Variation versus mean for replicated features.

14

5 Feature categories and filtering

Each Ct values in HTqPCR has an associated feature category. This is an important component to
indicate the reliability of the qPCR data. Aside from the “OK” indicator, there are two other categories:
“Undetermined” is used to flag Ct values above a user-selected threshold, and “Unreliable” indicates Ct
values that are either so low as to be estimated by the user to be problematic, or that arise from deviation
between individual Ct values across replicates. By default, only Ct values labelled as “undetermined”
in the input data files are placed into the “Undetermined” category, and the rest are classified as “OK”.
However, either before or after normalisation these categories can be altered depending on various
criteria.

Range of Ct values Some Ct values might be too high or low to be considered a reliable measure of
gene expression in the sample, and should therefore not be marked as “OK”.

Flags Depending on the qPCR input the values might have associated flags, such as “Passed” or
“Failed”, which are used for assigning categories.

Biological and technical replicates If features are present multiple times within each sample, or if
samples are repeated in the form of technical or biological replicates, then these values can be
compared. Ct values lying outside a user-selected confidence interval (90% by default) will be
marked as “Unreliable”.

A summary plot for the sample categories is depicted in Figure 7. The result can be stratified by
featureType or featureClass, for example to determine whether one class of features performed
better or worse than others.

> raw.cat <- raw
> plotCtCategory(raw.cat)

> plotCtCategory(raw.cat, stratify = "class")
The results can also be shown per feature rather than averaged across samples (Figure 8).
> plotCtCategory(raw.cat, by.feature = TRUE, cexRow = 0.1)

If one doesn’t want to include unreliable or undetermined data in part of the analysis, these Ct values
can be set to NA using filterCategory. However, the presence of NAs could make the tests for
differential expression less robust. When testing for differential expression the result will come with an
associated category (“OK” or “Unreliable”) that can instead be used to assess the quality of the results.
For the final results both “Undetermined” and “Unreliable” are pooled together as being “Unreliable”.
However, the label for each feature can either be set according to whether half or more of the samples are
unreliable, or whether only a single non-“OK” category is present, depending on the level of stringency
the user wishes to enforce.

15

B Undetermined

O OK

Feature categories

350
300 —
250 —
200 —
150 —
100 —
50 -

0 -

B Undetermined

O OK

geldures | e
[E—
L foseun
"
| B
I Sosow
| I e
s
L Sosoun
e
m.hmv:m_z
] foseun
" R
zardues S Eewn
B foseun
|
rordues T Eeen
] Soseun

Ggoa|dwes

ya|dwes

Feature categories

coa|dwes

I
o o
o

150 —
100 —

Figure 7: Summary of the categories, either for each sample individually or stratified by feature class.
16

N ™ — To) < ©
@ @ @ @ @ Q@
o S o o S o
S S S S S S
@M @ @ @ @ @
N (4] tn N (4] tn

Figure 8: Summary of the categories, clustered across features.

17

6 Normalisation

Five different normalisation methods are currently implemented in HTqPCR. Three of these (scale.rankinvariant,
deltaCt and geometric.mean) will scale each individual sample by a given value, whereas the remaining
two will change the distribution of Ct values.

quantile Will make the distribution of Ct values more or less identical across samples.

norm.rankinvariant Computes all rank-invariant sets of features between pairwise com- parisons of
each sample against a reference, such as a pseudo-mean. The rank-invari- ant features are used
as a reference for generating a smoothing curve, which is then applied to the entire sample.

scale.rankinvariant Also computes the pairwise rank-invariant features, but then takes only the fea-
tures found in a certain number of samples, and used the average Ct value of those as a scaling
factor for correcting all Ct values.

deltaCt Calculates the standard deltaCt values, i.e. subtracts the mean of the chosen controls from
all other values in the feature set.

geometric.mean Calculates the average Ct value for each sample, and scales all Ct values according
to the ratio of these mean Ct values across samples. There are some indications that this is
beneficial for e.g. miRNA studies.

For the rank-invariant normalisation and geometric mean methods, Ct values above a given threshold
can be excluded from the calculation of a scaling factor or normalisation curve. This is useful so that
a high proportion of “Undetermined” Ct values (assigned a value of 40 by default) in a given sample
doesn’t bias the normalisation of the remaining features.

In the example dataset, Genel and Gene60 correspond to 185 RNA and GADPH, and are used as
endogenous controls. Normalisation methods can be run as follows:

> g.norm <- normalizeCtData(raw.cat, norm = "quantile")
> sr.norm <- normalizeCtData(raw.cat, norm = "scale.rank")

Scaling Ct values
Using rank invariant genes: Genel Gene29
Scaling factors: 1.00 1.06 1.00 1.03 1.00 1.00

> nr.norm <- normalizeCtData(raw.cat, norm = "norm.rank")

Normalizing Ct values

Using rank invariant genes:

samplel: 71 rank invariant genes
sample2: 43 rank invariant genes
sample3: 41 rank invariant genes
sample4: 76 rank invariant genes
sampleb5: 22 rank invariant genes
sample6: 62 rank invariant genes

> d.norm <- normalizeCtData(raw.cat, norm = "deltaCt",
+ deltaCt.genes = c("Genel", "Gene60"))

18

Calculating deltaCt values
Using control gene(s): Genel Gene60

Card 1: Mean=14.45 Stdev=4.25
Card 2: Mean=15.19 Stdev=5.27
Card 3: Mean=14.5 Stdev=5.79
Card 4: Mean=14.79 Stdev=4.79
Card 5: Mean=14.07 Stdev=5.32
Card 6: Mean=13.82 Stdev=4.75
> g.norm <- normalizeCtData(raw.cat, norm = "geometric.mean")

Scaling Ct values
Using geometric mean within each sample
Scaling factors: 1.00 1.06 1.05 1.02 1.04 1.02

Comparing the raw and normalised values gives an idea of how much correction has been performed
(Figure 9), as shown below for the q.norm object. Note that the scale on the y-axis varies.

> plot(exprs(raw), exprs(q.norm), pch = 20, main = "Quantile normalisation",
+ col = rep(brewer.pal(6, "Spectral"), each = 384))

19

Quantile normalisation

Rank invariant scaling

3 L) . "'0 []
w oo =3 o . . .)
@10
0 B 54 .
3] P .
H
' ’ﬂ %]
sl
o .
8 fl N .
(2]
I . :
.
10 ¢ .
N . o 0' g °
. L]
8 . o
° S v
. »
. . . o
4 3
L]
. [od .
9! - 9 -
. . oo
o o
T T T T T T T T T T T T T T T
10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
Rank invariant normalisation deltaCt normalisation
n
P . . ee o o2 2
N
e e e s [}
P] 3
. : ° Y ook
©@ fr « .,. (1
. P ..
K : 2
© . .‘ ° B [o
« [
R - B
A
o . 1
o ot = g
N
R
- . L}
o .
. o
wn
-
.
o . o
- .
a - .
. b oo
. Le L]
T T T T T T T T T T T T T T T
10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
Geometric mean normalisation Comparison of methods for sample 3
g4 .]
. . ° ° —— Quantile -
< o0 [] . . . L]
< —— Rank.invariant scaling
r e o o ° = Rank.invariant normalization]
o —— deltaCt s 3
] J 8 —— Geometric.mean ‘e ¢
3] ge -
* T, o9 [}
. . .; 9 . .
S l' - o ¢ ¢ ! o .
) . . 4
"y . Q s JJ?
.
.
9 : @ -~ :
L] - L4
o o =] 8 o® e
N “ . °
o .
n
3
o
o -"‘ . -
-
.
o
o
T T T T T T T T T T T T T T
10 15 20 25 30 35 40 10 15 20 25 30 35 40

Figure 9: Normalized versus raw data, using a separate colour for each sample. The raw data is plotted
along the x-axis and the normalised along y. The last plot is a comparison between normalization
methods for the third sample, still with the raw Ct0%alues along the x-axis.

7 Filtering and subsetting the data

At any point during the analysis it’s possible to filter out both individual features or groups of features
that are either deemed to be of low quality, or not of interest for a particular aspect of the analysis.
This can be done using any of the feature characteristics that are included in the featureNames,
featureType, featureClass and/or featureCategory slots of the data object. Likewise, the qPCRset
object can be turned into smaller subsets, for example if only a particular class of features are to be
used, or some samples should be excluded.

Simple subsetting can be done using the standard [,] notation of R, for both rows (genes) and columns
(samples).

21

Color Key

Ct correlation

T T 11
0 04 1
Value

sample2

sample3

sample5

sample4

sample6

samplel

samplel
sample6
sample4
sample5
sample3
sample2

Figure 10: Correlation between raw Ct values.

8 Quality assessment

8.1 Correlation between samples

The overall correlation between different samples can be displayed visually, such as shown for the raw
data in Figure 10. Per default, 1 minus the correlation is plotted.

> plotCtCor(raw, main = "Ct correlation")

8.2 Distribution of Ct values

It may be of interest to examine the general distribution of data both before and after normalisation.
A simple summary of the data can be obtained using summary as shown below.

22

o —— samplel
;! - - - sample2

sample3

sample4
8 | sample5 s
o - sample6 N
©
O_ —
o
<
Q —
o
N
O_ —
o

\

o
S g \
e T

50

40

30

20

10

samplel

Figure 11: Distribution of Ct values for the individual samples, either using the density of all arrays
(left) or a histogram of a single sample (right), after scale rank-invariant normalisation.

> summary (raw)

Min.

1st Qu.

Median
Mean

3rd Qu.

Max.

samplel
" 7.218
"26.738
"28.937
"29.543
"33.323
"40.000

sample2

noT.
" on2g.
" r30.
"on32,
" o35,
" 40,

408"
855"
994"
190"
985"
000"

sample3

" 6.
"27.
"29.
"30.
"32.
"40.

19"
90"
92"
35"
98"
00"

sampled

" 6.
"26.
"29.
"30.
"34.
"40.

853"
964"
943"
590"
694"
000"

sampleb
" 6.787"
"27.913"
"30.778"
"30.995"
"34.702"
"40.000"

sample6
" 5.133"
"27.514"
"29.931"
"30.663"
"35.046"
"40.000"

However, figures are often more informative. To that end, the range of Ct values can be illustrated
using histograms or with the density distribution, as shown in Figure 11.

> plotCtDensity(sr.norm)

> plotCtHistogram(sr.norm)

Plotting the densities of the different normalisation methods lends insight into how they differ (Fig-

ure 12).

Ct values can also be displayed in boxplots, either with one box per sample or stratified by different
attributes of the features, such as featureClass or featureType (Fig. 13).

> plotCtBoxes(sr.norm, stratify = "class")

23

Raw Ct values quantile

| = samplel 8 | =—— samplel
© = = sample2 o = = sample2
o - sample3 sample3
e sample4 N sample4
] sample5 < sample5 !
- @4 - le6
s | sample6 p= sampl
=
o o
S H S
S T T T T S T T T T
0 10 20 30 40 10 20 30 40
scale.rankinvariant o norm.rankinvariant
—
o
- —— samplel — samplel
© = = sample2 = = sample2
< sample3 S sample3
(=] S !
sample4 \ © sample4 \
1 sample5 sample5
r
g B sample6 9 | sample6
o (=]
o o
© T T T T S T T T T T T T
0 10 20 30 40 5 10 15 20 25 30 35
deltaCt geometric.mean
-{ = samplel 1 =—— samplel
© = = sample2 x | — - sample2
S A sample3 S sample3
o
sample4 | sample4
1 sample5 sample5
s | sample6 g_ a sample6
S o
o o \
S S -
© T T T T T S T T T T
-10 0 10 20 30 0 10 20 30 40

Figure 12: Densities of Ct values for all samples before and after each of the normalisation methods.
The peak at the high end originates from features with “Undetermined” Ct values, which are assigned
the Ct value 40 by default.

24

1T 1T 1T 1T 11
samplel sample2 sample3 sample4 sample5 sample6

yep

41
SENTLEIN
aseuny|
41
SENTLEIN
aseury|
41
SENTLEIN
aseuny|
41
SENTLEIN
aseuny|
d1
SENTLEIN
aseury|
d1
SENTLEIN
aseury|

Figure 13: Boxplot of Ct values across all samples, stratified by feature classes.

25

o | .
Q R"2: 0.350 ~ R"2:0.611
RA2 (Ct<35): 0.585 RA3 (Ct<35): 0.814 e oTwe H
o o oo oie
o | 8 . e
™ . é o H
o §ow 2o
8 8 sl
(‘l’l“
. £2
g] ('LQ — oo
o
o _| o _| o
N N
3 g e Kinase
o * Endogenous Control Marker ¢
Target y
o ¢ s | o TF
\ T T T T T T \ T T T T T T
10 15 20 25 30 35 40 10 15 20 25 30 35 40

Figure 14: Scatter plot of Ct values in different samples, with points marked either by featureType
(left) or featureClass (right) and the diagonal through x = y marked with a grey line.

8.3 Comparison of Ct values for two samples

It is often of interest to directly compare Ct values between two samples. In Figure 14, two examples
are shown for the rank-invariant normalised data: one for different biological samples, and one for
replicates.

> plotCtScatter(sr.norm, cards c(1, 2), col = "type",

+ diag = TRUE)

> plotCtScatter(sr.norm, cards c(1, 4), col = "class",

+ diag = TRUE)

8.4 Scatter across all samples

It is also possible to generate a scatterplot of Ct values between more than the two samples shown
above. In Figure 15 all pairwise comparisons are shown, along with their correlation when all Ct values
<35 are removed.

> plotCtPairs(sr.norm, col = "type", diag = TRUE)

8.5 Ct heatmaps

Heatmaps provide a convenient way to visualise clustering of features and samples at the same time,
and show the levels of Ct values (Figure 16). The heatmaps can be based on either Pearson correlation
coefficients or Euclidean distance clustering. Euclidean-based heatmaps will focus on the magnitude of
Ct values, whereas Pearson clusters the samples based on similarities between the Ct profiles.

26

2| vy : ..:%::v
- H 7 w8
samplel ,:A"?'a'" f . .aﬁ‘ }{?' s
[; A i & F &
¢ [e el [et
g A apee . . ‘A;-:. ! .‘:. i M'fv H
T 0.58 sample2 F . T ¥ 1 A
L~ k4 el
#i gl L
0.72 0.82 sample3 B giN F . gl
. N %
$ - . N A
o 0.81 0.79 0.74 sample4 .Jv’g:r . !“ .
v v :%-v:;!: <
B
0.79 0.80 0.76 0.75 sample5 : ,/f. C
<] 0.61 0.76 0.66 0.71 0.73 sample6
1‘0 I 2‘0 I 3‘0 I 4‘0 10 I ZID I 3‘0 I 4‘0 1‘0 I 2‘0 I 3‘0 I 4‘0

Figure 15: Scatterplot for all pairwise comparisons between samples, with spots marked depending on
featureType, i.e. whether they represent endogenous controls or targets.

27

> plotCtHeatmap(raw, gene.names = "", dist = "euclidean")

8.6 Coeflicients of variation

The coefficients of variation (CV) can be calculated for each feature across all samples. Stratifying
the CV values by featureType or featureClass can help to determine whether one class of features
is more variable than another (Figure 17). For the example data feature classes have been assigned
randomly, and the CVs are therefore similar, whereas for the feature types there’s a clear difference
between controls and targets.

> plotCVBoxes(qPCRraw, stratify = "class")
> plotCVBoxes(qPCRraw, stratify = "type")

9 Clustering

At the moment there are two default methods present in HT¢PCR for clustering; hierarchical clustering
and principal components analysis (PCA).

9.1 Hierarchical clustering

Both features and samples can be subjected to hierarchical clustering using either Euclidean or Pearson
correlation distances, to display similarities and differences within groups of data. Individual subclusters
can be selected, either using pre-defined criteria such as number of clusters, or interactively by the user.
The content of each cluster is then saved to a list, to allow these features to be extracted from the full
data set if desired.

An example of a clustering of samples is shown in Figure 18. In Figure 19 these data are clustered by
features, and the main subclusters are marked.

> clusterCt(sr.norm, type = "samples")
> cluster.list <- clusterCt(sr.norm, type = "genes",
+ n.cluster = 6, cex = 0.5)

9.2 Principal components analysis

PCA is performed across the selected features and samples (observations and variables), and can be
visualized either in a biplot, or showing just the clustering of the samples (Figure 20).

> plotCtPCA(qPCRraw)
> plotCtPCA(qPCRraw, features = FALSE)

28

Color Key

10 20 30 40
Value

bz 1F s o s

|I "I

F’ll[’n i fIFT.'r.

‘rrr | Elm

|

blla e

Figure 16: Heatmap for all samples and genes, based on the Euclidean distance between Ct values.

29

0.2 0.4 0.6 0.8

0.0

Height

@
0.4 0.6

:

0.0

: Coeflicients of variation for each feature across all samples.

Figure 17
o}
©
oS I

N
o 12
-
o ©
1 »
o
Of)__
o

I

—
i 2 5 3 i
g 2 ’ 2 5
5 5 5 3

Cluster dendrogram

Figure 18: Hierarchical clustering of samples.

30

20

Height
00 05 10 15
L . . .

Cluster dendrogram

-10 0 10 20
< \ \ \ \
c 7 * S
o | - sample2
o < | sample3
o
N
o
L aN
Sage
| sample5
o
o |
o o
= - O
* N
— P
o]
! o
o~ T e ©
S ? 7 sampample6
sample4
T T T T T T T T T T T T T
-0.2 -0.1 00 01 02 03 04 0.34 036 0.38 0.40 042 0.44 0.46

Figure 20: Left: a biplot including all features, with samples represented by vectors. Right: the same
plot, including only the samples.

31

10 Differential expression

At this stage multiple filterings might have been performed on the data set(s). To remind yourself
about those, you can use the getCtHistory function on the ¢PCRset object.

> getCtHistory(sr.norm)

history
1 readCtData(files = files$File, path = path)
2 normalizeCtData(q = raw.cat, norm = "scale.rank")

In general there are three approaches in HTgPCR for testing the significance of differences in Ct values
between samples.

t-test Performing a standard t-test between two sample groups. This function will incorporate infor-
mation about replicates to calculate t and p-values. This is a fairly simple approach, typically
used when comparing a single treatment and control sample, and multiple pair-wise tests can be
carried out one-by-one by the user.

Mann-Whitney This is a non-parametric test, also known as a two sample Wilcoxon test. Similar to
the t-test, multiple pair-wise tests will have to be carried out one by one if more than two types
of samples are present. This is a rank-based test that doesn’t make any assumptions about the
population distribution of Ct values.

limma Using a wrapper for functions from the package limma to calculate more sophisticated t and
p-values for any number of groups present across the experiment. This is more flexible in terms
of what types of comparisons can be made, but the users need to familiarise themselves with the
limma conventions for specifying what contrasts are of interest.

Examples of how to use each of these are given in the next sections. In all cases the output is similar; a
data frame containing the test statistics for each feature, along with fold change and information about
whether the Ct values are “OK” or “Unreliable”. This result can be written to a file using standard
functions such as write.table.

10.1 Two sample types - t-test

This section shows how to compare two samples, e.g. the control and long starvation samples from the
example data. A subset of the qPCRset data is created to encompass only these samples, and a t-test
is then performed. See ’7ttestCtData’ for examples.

10.2 Two sample types - Mann-Whitney

When only two samples are of interest, these can also be compared using a Mann-Whitney test. As
is the section above, the function is demonstrated using the control and long starvation samples from
the example data. A subset of the qPCRset data is created to encompass only these samples, and a
Mann-Whitney test is performed. See ’?mannwhitneyCtData’ for examples.

32

10.3 Multiple sample types - limma

Methods taken from [limma can be used to compare either two or multiple sample types. In this
example all three types of treatment are compared, as well as the control against both starvation
samples combined. The data is sorted by feature names, to make easier use of replicated features. See
"?limmaCtData’ for examples.

The result is a list with one component per comparison. Each component is similar to the result from
using ttestCtData.

Furthermore, there is a “Summary” component at the end where each feature is denoted with -1, 0 or
1 to respectively indicate down-regulation, no change, or up-regulation in each of the comparisons.

33

11 Displaying the results

The results can be visualised using the generic plotCtOverview shown in Figure 3. However, HTqPCR
also contains more specialised functions, for example to include information about whether differences
are significant or not.

11.1 Fold changes: Relative quantification

The relative Ct levels between two groups can be plotted with the function plotCtRQ. Below are two
examples: one the result of ttestCtData where the top 15 genes are selected and another from the first
comparison in 1immaCtData where all genes below a certain p-value are depicted.

11.2 Fold changes: Detailed visualisation

In some cases it will be beneficial to more closely examine individual Ct data points from the fold
changes, partly to look at the data dispersion, and partly to determine which of these values are in
the “OK” versus “Unreliable”/“Undetermined” category. The function plotCtSignificance will take
the result of ttestCtData or limmaCtData, along with the input data to these functions, and display a
combined barplot showing the individual data points and marking those comparisons with a significant
p-value.

11.3 Heatmap across comparisons

When multiple conditions are compared with 1immaCtData, the fold changes from all comparisons can
be compared to see if features cluster together in groups.

34

12 Manipulating qPCRset objects

Depending on the design of the qPCR card and how the data is to be analysed, it will sometimes be
necessary to manipulate the gPCRset objects in different ways, such as by combining several objects or
altering the layout of features x samples.

12.1 Multiple samples present on each plate

The result from each qPCR run of a given card typically gets presented together, such as in a file with
384 lines, one per feature, for 384 well plates. However, some cards may contain multiple samples, such
as commercial cards that are designed to be loaded with two separate samples and then include 192
individual features.

Per default, readCtData reads each card into a gPCRset object as consisting of a single sample, and
hence one column in the Ct data matrix. When this is not the case, the data can subsequently be split
into the correct features x samples (rows x columns) dimensions using the function changeCtLayout.
The parameter sample.order is a vector, that for each feature in the ¢PCRset indicates what sample
it actually belongs to, and reformats all the information in the ¢PCRset (exprs, featureCategory,
flag etc.) accordingly. The actual biological samples are likely to differ on each card, so sample.order
merely indicates the location of different samples among the features present in the input data.

> sample2.order <- rep(c("subSampleA", "subSampleB"),

+ each = 192)

> sampled.order <- rep(c("subA", "subB", "subC", "subD"),

+ each = 96)

> gPCRnew2 <- changeCtLayout(sr.norm, sample.order = sample2.order)
> show(qPCRnew2)

An object of class "qPCRset"
Size: 192 features, 12 samples
Feature types:

Feature names: Genel Gene2 Gene3 ...

Feature classes:

Feature categories: 0K, Undetermined

Sample names: subSampleA:samplel subSampleA:sample2 subSampleA:sample3 ...

> gPCRnew4 <- changeCtLayout(sr.norm, sample.order = sample4.order)
> show(gPCRnew4)

An object of class "gPCRset"

Size: 96 features, 24 samples

Feature types:

Feature names: Genel Gene2 Gene3 ...

Feature classes:

Feature categories: 0K, Undetermined

Sample names: subA:samplel subA:sample2 subA:sample3 ...

As with the other functions that manipulate the Ct data, the operation is stored in the history slot
of the ¢PCRset for future reference.

35

> getCtHistory(qPCRnew4)

history
1 Manually created qPCRset object.
2 changeCtLayout(q = sr.norm, sample.order = sample4.order)

12.2 Combining multiple qPCRset objects

In some cases it might be desirable to merge multiple qPCRset objects, that have been read into R or
processed individually. The HTqPCR package contains two functions for combining multiple gPCRset
objects into one, by either adding columns (samples) or rows (features). This can be done for either
identical samples across multiple different cards (such as a 384 well plate), or if more samples have been
run on cards with the same layout.

cbind combines data assuming that all experiments have been carried out on identical cards, i.e. that
featureNames, featureType, featurePos and featureClass isidentical across all the qPCRset
objects. The number of features in each object much be identical, but number of samples can
vary.

rbind combines data assuming that the same samples have been analysed using different qPCR, cards.
The number of samples in each object must be identical, but the number of features can vary.

Both these functions should be used with some care; consider e.g. whether to normalize before or after
joining the samples, and what method to use.

In the examples here objects with different normalisation are combined, although in a real study the
gPCRset objects would typically contain different data.

As with other functions where the qPCRset object is being manipulated, the information is stored in
the history slot.

36

13 How to handle different input data

General information about how to read qPCR data into a ¢PCRset object is presented in section 3.
Below, some more specific cases are illustrated. Functions specifically designed for such qPCR platforms
are still on a test stage in HT¢PCR, and will be expanded (/corrected /modified) depending on demand.

13.1 Sequence Detection Systems format

The qPCR data might come from Sequence Detection Systems (SDS) software. The is supplied with
most instruments from Applied Biosystems, but the software can also be used for assays from other
vendors, such as the miRCURY LNA Universal RT microRNA PCR system from Exiqon.

For SDS output, each file has a header containing some generic information about the initial Ct detec-
tion. This header varies in length depending on how many files were analysed simultaneously, and an
example is shown below.

> path <- system.file("exData", package = "HTqPCR")
> cat(paste(readLines(file.path(path, "SDS_sample.txt"),
+ n=19), "\n"))

SDS 2.3 RQ Results 1.2

Filename Testscreen analys all.sdm

Assay Type RQ Study

EmbeddedFile FileA

Run DateTime Fri May 15 17:10:28 BST 2009

Operator

ThermalCycleParams

EmbeddedFile FileB

Run DateTime Sat May 16 10:36:09 BST 2009

Operator

ThermalCycleParams

EmbeddedFile FileC

Run DateTime Sun May 17 13:21:05 BST 2009

Operator

ThermalCycleParams

Plate Pos Flag Sample Detector Task

1 Control Al Passed SampleO1 Genel Endogenous Contr
2 Control A2 Passed SampleO1 Gene2 Target 33

Only the first 7 columns are shown, since the file shown here contains >30 columns (of which many are
empty). All columns for the first 20 lines can be seen in an R terminal with the command:

> readLines(file.path(path, "SDS_sample.txt"), n = 20)

For these files the parameter for="SDS" can be set in readCtData. The first 100 lines of each file will
be scanned, and all lines preceding the actual data will be skipped (in this case 17), even when the
length of the header varies between files.

37

> path <- system.file("exData", package = "HTqPCR")

> raw <- readCtData(files = "SDS_sample.txt", path = path,
+ format = "SDS")

> show(raw)

An object of class "qPCRset"

Size: 384 features, 1 samples

Feature types:

Feature names: Genel Gene2 Gene3 ...
Feature classes:

Feature categories: 0K, Undetermined

Sample names: SDS_sample ...

13.2 LightCycler format

Some qPCR systems, such as the LightCycler from Roche, don’t provide the results as Ct values, but
instead as crossing points (Cp). Ct values are measured at the exponential phase of amplification by
drawing a line parallel to the x-axis of the real-time fluorescence intensity curve (fit point method)
whereas Cp (second derivative method) calculates the fractional cycle where the second derivative of
the real-time fluorescence intensity curve reaches the maximum value.

As long as all samples and features are quantified using the same method, it shouldn’t matter whether
Ct or Cp values are being used to test for significant differences between samples. The analysis of
e.g. LightCycler Cp data can therefore proceed as outlined in this vignette. One thing to bear in
mind though, is that for Ct values a value of 40 generally means NA, and above 35 is considered
unreliable, however these numbers will be different for Cp. When using the filtering methods to set
results as being “OK", “Unreliable" and “Undetermined", the parameters in e.g. setCategory(. . .,
Ct.max = 35, Ct.min = 10, ...) and readCtData(..., na.value, ...) will need to be adjusted
accordingly.

HTqPCR contains example data from the LightCycler 480 Real-Time PCR System, however not all
wells were used during that particular experiment.

> path <- system.file("exData", package = "HTqPCR")

> raw <- readCtData(files = "LightCycler_sample.txt",
+ path = path, format = "LightCycler")

> show(raw)

An object of class "qPCRset"

Size: 384 features, 1 samples

Feature types:

Feature names: Sample 1 Sample 2 Sample 3 ...
Feature classes:

Feature categories: 0K

Sample names: LightCycler_sample ...

38

13.3 CFX format

The CFX Connect Real-Time PCR Detection System from Bio-Rad laboratories is another qPCR
system based on microtitre plates, such as the CFX96 and CFX384 Touch. The output values from
the software are “Cq”, the quantification cycle values. This is the cycle number where the fluorescence
increases above a given threshold, i.e. equivalent to Ct values. The example file included into HTqPCR
contains a number of empty wells. Per default, these are excluded from the output file, and hence
n.features has to be set accordingly.

> path <- system.file("exData", package = "HTqPCR")

> raw <- readCtData(files = "CFX_sample.txt", path = path,
+ format = "CFX", n.features = 330)

> show(raw)

An object of class "qPCRset"
Size: 330 features, 1 samples
Feature types:

Feature names: miR-101 miR-101 miR-116 ...
Feature classes:

Feature categories: 0K

Sample names: CFX_sample ...

The file is expected to contain comma-separated values, rather than tab-separated, although the file

(13

ending can be either of .txt and .csv. In some (mainly older versions) of CFX files, “,” is the character
(132

used for decimal points rather than “.”, so the Cq values can be for example “25,3” instead of “25.3”. If
this is the case, the parameters dec="" needs to be added to readCtData.

13.4 BioMark format

In addition to multi-well microtitre plates, other assay formats have also emerged for performing high-
throughput qPCR analysis. These include for example the 48.48 and 96.96 BioMark HD System from
Fluidigm Corporation. For the 48.48 assay, 48 individual samples are loaded onto a plate along with
qPCR primers for 48 genes. Using microfluidic channels all possible sample X primer reactions are
assayed in a combinatorial manner using 2,304 individual reaction chambers, to generate e.g. 48 real-
time curves for each of 48 samples. Results are then reported in a single file with 2304 rows of data.
This file completely determines the order in which the samples are being read in, i.e. from row 1 onwards,
regardless of how the samples are usually loaded onto each specific assay type.

HTqPCR includes a comma-separated file containing example data from a BioMark 48.48 array. The
data can be read in two way. Setting n.features=2304 will read in all the information and create a
gPCRset object with dimensions 2304x1. Setting n.data=48 and n.features=48 will however automati-
cally convert this into a 48x48 gPCRset. The latter is typically what will be required for doing statistical
tests of differences between samples. However, in some cases when results are combined across multiple
arrays it may be advantageous to keep these arrays as separate columns in the gPCRset object initially,
in case it’s necessary to perform an array-based normalisation.

> exPath <- system.file("exData", package = "HTqPCR")
> rawl <- readCtData(files = "BioMark_sample.csv",

39

+ path = exPath, format = "BioMark", n.features = 48,
+ n.data = 48)
> dim(rawl)
Features Samples
48 48
> raw2 <- readCtData(files = "BioMark_sample.csv",
+ path = exPath, format = "BioMark", n.features = 48 x*
+ 48, n.data = 1)

> dim(raw?2)

Features Samples
2304 1

If array-specific effects are likely to be present, a useful normalisation strategy might be to combine the
data into a qPCRset object containing one column for each array, and 48x48 or 96x96 samples. That
way overall differences between the arrays can be removed, and afterwards the data can be split with
changeCtLayout to generate one column per individual sample rather than one column per array.
The column “Call” in the sample file contains information about the result of the qPCR reaction. Per
default, a call of “Pass” is translated into “OK” in the featureCategory, and “Fail” as “Undetermined”.
The assay readouts are Ct values, which can be analysis using HTQPCR in a similar fashion to Ct
values from other technologies, both regarding the statistical analysis and data visualisation. The
function plotCtArray can be used for displaying the layout of the qPCR results instead of plotCtCard
(Figure 21).

> plotCtArray(rawl)

13.5 OpenArray format

Like the BioMark output from Fluidigm, files from the OpenArray Real-Time PCR System from Applied
Biosystems contains multiple samples per plate, currently up to 48. As mentioned in the section on
BioMark, this can be used either in a gPCRset object with one column per plate, or with one column
per sample. A comma-separated example file is included in HTqPCR, where a plate with 5076 qPCR
reactions contains 846 features measured across 6 separate samples:

This file completely determines the order in which the samples are being read in, i.e. from row 1 onwards,
regardless of how the samples are usually loaded onto each specific assay type.

> exPath <- system.file("exData", package = "HTqPCR")
> rawl <- readCtData(files = "OpenArray_sample.csv",
+ path = exPath, format = "OpenArray", n.features = 846,
+ n.data = 6)
> dim(rawl)
Features Samples
846 6
> raw2 <- readCtData(files = "OpenArray_sample.csv",
+ path = exPath, format = "OpenArray", n.features = 846 *

40

Ct values

Figure 21: Ct values for a test Fluidigm 48.48 Array. 48 samples are loaded into rows, and 48 PCR
primers into columns, resulting in 2,304 combinatorial qPCR reactions. Four individual genes were

added in 12 replicates each into the 48 columns to assess technical variability. Grey corresponds to
MNA”.

41

+ 6, n.data = 1)
> dim(raw?2)

Features Samples
5076 1

The column “ThroughHole.Outlier” in the sample file indicates the quality of the gPCR measurement.
Per default, if the Ct value is an outlier it is translated into having featureCategory “Unreliable”,
otherwise it’s “OK”.

13.6 Additional devices

More assays for high-throughput real-time qPCR systems are constantly emerging. In case of systems
based on standard microtitre plates, these can still be imported by HT¢PCR, even if they are not
specifically included into (readCtData). The results need to be converted into tab-separated text, and
read using format="plain". Some assays are more esoteric, or contain multiple samples on each plates,
which need to be re-formatted into a matrix in R. Below, a BioMark file from Fluidigm is used as an
example of how to do this. This file can be read automatically by setting format="BioMark", but it’s
here used to illustrate how the same thing can be done manually, and be transformed into a qPCRset
object in one of two ways.

First, gPCRset can be constructed indirectly, by reading the data into a data frame, creating a 48x48
matrix manually, and generating a new qPCRset. The file was inspected first, and turned out to have
an 11 line header plus a header line, which have to be skipped when reading the data into HTqPCR.
Alternatively, the data can be read directly into a qPCRset in a 1x2304 format using readCtData,
and then re-formatted into 48x48 using changeCtLayout. This will automatically read in additional
information such as feature names, positions and categories (Failed /Passed) if available.

Information from multiple microfluidic devices can then subsequently be combined using cbind and
rbind.

42

14

Concluding remarks

This vignette was generated using;:

R version 4.4.3 (2025-02-28), x86_64-apple-darwin20

Locale: C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
Time zone: America/New_York

TZcode source: internal

Running under: mac0S Monterey 12.7.6

Matrix products: default

BLAS:
/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/1ibRblas.0.dylib

LAPACK:
/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRlapack.dylib
; LAPACK version3.12.0

Base packages: base, datasets, grDevices, graphics, methods, stats, utils

Other packages: Biobase 2.66.0, BiocGenerics 0.52.0, HTqPCR 1.60.1, RColorBrewer 1.1-3,
limma 3.62.2

Loaded via a namespace (and not attached): BiocManager 1.30.25, KernSmooth 2.23-26,
affy 1.84.0, affyio 1.76.0, bitops 1.0-9, caTools 1.18.3, compiler 4.4.3, gplots 3.2.0, gtools 3.9.5,
preprocessCore 1.68.0, statmod 1.5.0, stats4 4.4.3, tools 4.4.3, zlibbioc 1.52.0

43

	Introduction
	qPCRset objects
	Reading in the raw data
	Data visualisation
	Overview of Ct values across all groups
	Spatial layout
	Comparison of duplicated features within samples
	Variation within and across samples

	Feature categories and filtering
	Normalisation
	Filtering and subsetting the data
	Quality assessment
	Correlation between samples
	Distribution of Ct values
	Comparison of Ct values for two samples
	Scatter across all samples
	Ct heatmaps
	Coefficients of variation

	Clustering
	Hierarchical clustering
	Principal components analysis

	Differential expression
	Two sample types - t-test
	Two sample types - Mann-Whitney
	Multiple sample types - limma

	Displaying the results
	Fold changes: Relative quantification
	Fold changes: Detailed visualisation
	Heatmap across comparisons

	Manipulating qPCRset objects
	Multiple samples present on each plate
	Combining multiple qPCRset objects

	How to handle different input data
	Sequence Detection Systems format
	LightCycler format
	CFX format
	BioMark format
	OpenArray format
	Additional devices

	Concluding remarks

