K-nearest neighbors:

We read in input.scone.csv, which is our file modified (and renamed) from the get.marker.names() function. The K-nearest neighbor generation is derived from the Fast Nearest Neighbors (FNN) R package, within our function Fnn(), which takes as input the “input markers” to be used, along with the concatenated data previously generated, and the desired k. We advise the default selection to the total number of cells in the dataset divided by 100, as has been optimized on existing mass cytometry datasets. The output of this function is a matrix of each cell and the identity of its k-nearest neighbors, in terms of its row number in the dataset used here as input.

library(Sconify)
# Markers from the user-generated excel file
marker.file <- system.file('extdata', 'markers.csv', package = "Sconify")
markers <- ParseMarkers(marker.file)

# How to convert your excel sheet into vector of static and functional markers
markers
## $input
##  [1] "CD3(Cd110)Di"           "CD3(Cd111)Di"           "CD3(Cd112)Di"          
##  [4] "CD235-61-7-15(In113)Di" "CD3(Cd114)Di"           "CD45(In115)Di"         
##  [7] "CD19(Nd142)Di"          "CD22(Nd143)Di"          "IgD(Nd145)Di"          
## [10] "CD79b(Nd146)Di"         "CD20(Sm147)Di"          "CD34(Nd148)Di"         
## [13] "CD179a(Sm149)Di"        "CD72(Eu151)Di"          "IgM(Eu153)Di"          
## [16] "Kappa(Sm154)Di"         "CD10(Gd156)Di"          "Lambda(Gd157)Di"       
## [19] "CD24(Dy161)Di"          "TdT(Dy163)Di"           "Rag1(Dy164)Di"         
## [22] "PreBCR(Ho165)Di"        "CD43(Er167)Di"          "CD38(Er168)Di"         
## [25] "CD40(Er170)Di"          "CD33(Yb173)Di"          "HLA-DR(Yb174)Di"       
## 
## $functional
##  [1] "pCrkL(Lu175)Di"  "pCREB(Yb176)Di"  "pBTK(Yb171)Di"   "pS6(Yb172)Di"   
##  [5] "cPARP(La139)Di"  "pPLCg2(Pr141)Di" "pSrc(Nd144)Di"   "Ki67(Sm152)Di"  
##  [9] "pErk12(Gd155)Di" "pSTAT3(Gd158)Di" "pAKT(Tb159)Di"   "pBLNK(Gd160)Di" 
## [13] "pP38(Tm169)Di"   "pSTAT5(Nd150)Di" "pSyk(Dy162)Di"   "tIkBa(Er166)Di"
# Get the particular markers to be used as knn and knn statistics input
input.markers <- markers[[1]]
funct.markers <- markers[[2]]

# Selection of the k. See "Finding Ideal K" vignette
k <- 30

# The built-in scone functions
wand.nn <- Fnn(cell.df = wand.combined, input.markers = input.markers, k = k)
# Cell identity is in rows, k-nearest neighbors are columns
# List of 2 includes the cell identity of each nn, 
#   and the euclidean distance between
#   itself and the cell of interest

# Indices
str(wand.nn[[1]])
##  int [1:1000, 1:30] 577 252 998 353 468 179 83 836 233 553 ...
wand.nn[[1]][1:20, 1:10]
##       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
##  [1,]  577   24  868  627  377  490  640  452  308   649
##  [2,]  252  296  521  902  921   18  892  468  247   686
##  [3,]  998  511  498  737  872  649  184  154  500   634
##  [4,]  353  986  706  926  533  834  976  125  146   106
##  [5,]  468  871  700  839   31  296  165  841  892   247
##  [6,]  179  288  521  694  252  391  726  469   82   942
##  [7,]   83  553  185  201  806  552  358  222  498   871
##  [8,]  836  715  548  289  910  530  418  213  121    42
##  [9,]  233   43  242  112  206  144   86  650   22    84
## [10,]  553   13  201  284  892  921  185   62  405   998
## [11,]  552  201  258  222  521  358  185  553  264   102
## [12,]  456  641  756  265  545  381  947  917  413   939
## [13,]  871  839  700  247  553  284  617  511  535   892
## [14,]  609  324  163  847  533   66  421  136  793   125
## [15,]  927  430  773  728  285  647  758  542  235    30
## [16,]  155  812  235  520  993  864  571  913  254   503
## [17,]  555  988  519  822   53  350  215  885  912   709
## [18,]  713  328  468  840  921  855  418  165  733   166
## [19,]  441   90  287  658  596  646  595  667  539   585
## [20,]  504  600  261  749  938  315  665  670  678   587
# Distance
str(wand.nn[[2]])
##  num [1:1000, 1:30] 2.76 3.02 2.46 4.03 2.98 ...
wand.nn[[2]][1:20, 1:10]
##           [,1]     [,2]     [,3]     [,4]     [,5]     [,6]     [,7]     [,8]
##  [1,] 2.762653 3.199871 3.203300 3.223112 3.268338 3.380915 3.409136 3.561651
##  [2,] 3.018629 3.079598 3.182182 3.190289 3.297410 3.328056 3.335644 3.394667
##  [3,] 2.461213 2.828404 2.856397 3.099537 3.289984 3.409879 3.417989 3.470655
##  [4,] 4.032526 4.315727 4.420810 4.574095 4.632136 4.862952 4.906549 5.006532
##  [5,] 2.979586 2.984123 3.005838 3.036749 3.109655 3.112481 3.112711 3.164958
##  [6,] 3.149844 3.259314 3.317002 3.352579 3.538963 3.548727 3.555555 3.678307
##  [7,] 3.442563 3.541359 3.553116 3.575274 3.615118 3.743540 3.766065 3.775543
##  [8,] 3.042903 3.112783 3.156877 3.165143 3.169237 3.254884 3.265306 3.267101
##  [9,] 5.603717 5.764127 5.764146 5.897896 5.918278 5.986271 6.001588 6.045350
## [10,] 3.408268 3.574754 3.583722 3.612292 3.669487 3.703260 3.741044 3.748880
## [11,] 3.247260 3.412549 3.657511 3.823118 3.831817 3.864908 3.867757 3.956265
## [12,] 3.442119 3.605673 3.801019 3.816136 3.820451 3.883057 3.912120 3.930539
## [13,] 2.564196 2.700455 2.844470 2.989359 3.001413 3.063995 3.070859 3.106239
## [14,] 5.354341 5.949307 5.958460 6.051648 6.087200 6.191659 6.206025 6.371971
## [15,] 3.414208 3.505909 3.534125 3.625601 3.646689 3.660121 3.688418 3.743238
## [16,] 2.183445 2.467871 2.564574 2.624695 2.698236 2.840044 2.865699 2.878891
## [17,] 3.597885 3.655385 3.684409 3.771032 3.852221 3.952906 3.977396 4.085777
## [18,] 2.310230 2.809737 2.873922 2.969204 3.072755 3.110989 3.114917 3.123732
## [19,] 3.500854 3.768423 3.873558 4.130891 4.465721 4.636100 4.763463 4.789015
## [20,] 2.672903 3.355523 3.485302 3.510808 3.512063 3.550185 3.578359 3.578420
##           [,9]    [,10]
##  [1,] 3.563866 3.604024
##  [2,] 3.412268 3.451099
##  [3,] 3.478296 3.547772
##  [4,] 5.098635 5.243080
##  [5,] 3.259964 3.261074
##  [6,] 3.713421 3.800139
##  [7,] 3.781334 3.797641
##  [8,] 3.271496 3.273412
##  [9,] 6.161786 6.182026
## [10,] 3.763887 3.793307
## [11,] 3.958814 3.996589
## [12,] 4.065284 4.101748
## [13,] 3.126310 3.146414
## [14,] 6.372856 6.448907
## [15,] 3.841774 3.842138
## [16,] 2.903163 3.011425
## [17,] 4.141474 4.149979
## [18,] 3.126840 3.139106
## [19,] 4.954560 5.057949
## [20,] 3.609483 3.630727

Finding scone values:

This function iterates through each KNN, and performs a series of calculations. The first is fold change values for each maker per KNN, where the user chooses whether this will be based on medians or means. The second is a statistical test, where the user chooses t test or Mann-Whitney U test. I prefer the latter, because it does not assume any properties of the distributions. Of note, the p values are adjusted for false discovery rate, and therefore are called q values in the output of this function. The user also inputs a threshold parameter (default 0.05), where the fold change values will only be shown if the corresponding statistical test returns a q value below said threshold. Finally, the “multiple.donor.compare” option, if set to TRUE will perform a t test based on the mean per-marker values of each donor. This is to allow the user to make comparisons across replicates or multiple donors if that is relevant to the user’s biological questions. This function returns a matrix of cells by computed values (change and statistical test results, labeled either marker.change or marker.qvalue). This matrix is intermediate, as it gets concatenated with the original input matrix in the post-processing step (see the relevant vignette). We show the code and the output below. See the post-processing vignette, where we show how this gets combined with the input data, and additional analysis is performed.

wand.scone <- SconeValues(nn.matrix = wand.nn, 
                      cell.data = wand.combined, 
                      scone.markers = funct.markers, 
                      unstim = "basal")

wand.scone
## # A tibble: 1,000 × 34
##    `pCrkL(Lu175)Di.IL7.qvalue` pCREB(Yb176)Di.IL7.qvalu…¹ pBTK(Yb171)Di.IL7.qv…²
##                          <dbl>                      <dbl>                  <dbl>
##  1                       0.935                      0.999                  1.000
##  2                       0.730                      0.979                  0.896
##  3                       0.516                      0.979                  0.854
##  4                       0.817                      0.979                  0.896
##  5                       0.287                      0.979                  0.974
##  6                       0.680                      0.979                  0.991
##  7                       0.232                      0.996                  0.875
##  8                       0.988                      0.979                  0.412
##  9                       0.425                      0.979                  0.953
## 10                       0.536                      0.979                  0.968
## # ℹ 990 more rows
## # ℹ abbreviated names: ¹​`pCREB(Yb176)Di.IL7.qvalue`,
## #   ²​`pBTK(Yb171)Di.IL7.qvalue`
## # ℹ 31 more variables: `pS6(Yb172)Di.IL7.qvalue` <dbl>,
## #   `cPARP(La139)Di.IL7.qvalue` <dbl>, `pPLCg2(Pr141)Di.IL7.qvalue` <dbl>,
## #   `pSrc(Nd144)Di.IL7.qvalue` <dbl>, `Ki67(Sm152)Di.IL7.qvalue` <dbl>,
## #   `pErk12(Gd155)Di.IL7.qvalue` <dbl>, `pSTAT3(Gd158)Di.IL7.qvalue` <dbl>, …

For programmers: performing additional per-KNN statistics

If one wants to export KNN data to perform other statistics not available in this package, then I provide a function that produces a list of each cell identity in the original input data matrix, and a matrix of all cells x features of its KNN.

I also provide a function to find the KNN density estimation independently of the rest of the “scone.values” analysis, to save time if density is all the user wants. With this density estimation, one can perform interesting analysis, ranging from understanding phenotypic density changes along a developmental progression (see post-processing vignette for an example), to trying out density-based binning methods (eg. X-shift). Of note, this density is specifically one divided by the aveage distance to k-nearest neighbors. This specific measure is related to the Shannon Entropy estimate of that point on the manifold (https://hal.archives-ouvertes.fr/hal-01068081/document).

I use this metric to avoid the unusual properties of the volume of a sphere as it increases in dimensions (https://en.wikipedia.org/wiki/Volume_of_an_n-ball). This being said, one can modify this vector to be such a density estimation (example http://www.cs.haifa.ac.il/~rita/ml_course/lectures_old/KNN.pdf), by treating the distance to knn as the radius of a n-dimensional sphere and incoroprating said volume accordingly.

An individual with basic programming skills can iterate through these elements to perform the statistics of one’s choosing. Examples would include per-KNN regression and classification, or feature imputation. The additional functionality is shown below, with the example knn.list in the package being the first ten instances:

# Constructs KNN list, computes KNN density estimation
wand.knn.list <- MakeKnnList(cell.data = wand.combined, nn.matrix = wand.nn)
wand.knn.list[[8]]
## # A tibble: 30 × 51
##    `CD3(Cd110)Di` `CD3(Cd111)Di` `CD3(Cd112)Di` `CD235-61-7-15(In113)Di`
##             <dbl>          <dbl>          <dbl>                    <dbl>
##  1         0.319         -0.0282        -0.0360                   0.349 
##  2        -0.473         -0.140         -0.487                   -0.122 
##  3         0.632          0.338         -0.451                   -0.378 
##  4        -0.0923         0.710         -0.0527                   0.627 
##  5        -0.643         -0.195         -0.297                    0.284 
##  6         0.361         -0.0554        -0.339                    0.340 
##  7        -0.174         -0.245         -0.200                   -0.434 
##  8        -0.797         -0.398         -1.04                    -1.20  
##  9        -0.0614         0.446          0.616                   -0.254 
## 10        -0.163         -0.145         -0.441                   -0.0194
## # ℹ 20 more rows
## # ℹ 47 more variables: `CD3(Cd114)Di` <dbl>, `CD45(In115)Di` <dbl>,
## #   `CD19(Nd142)Di` <dbl>, `CD22(Nd143)Di` <dbl>, `IgD(Nd145)Di` <dbl>,
## #   `CD79b(Nd146)Di` <dbl>, `CD20(Sm147)Di` <dbl>, `CD34(Nd148)Di` <dbl>,
## #   `CD179a(Sm149)Di` <dbl>, `CD72(Eu151)Di` <dbl>, `IgM(Eu153)Di` <dbl>,
## #   `Kappa(Sm154)Di` <dbl>, `CD10(Gd156)Di` <dbl>, `Lambda(Gd157)Di` <dbl>,
## #   `CD24(Dy161)Di` <dbl>, `TdT(Dy163)Di` <dbl>, `Rag1(Dy164)Di` <dbl>, …
# Finds the KNN density estimation for each cell, ordered by column, in the 
# original data matrix
wand.knn.density <- GetKnnDe(nn.matrix = wand.nn)
str(wand.knn.density)
##  num [1:1000] 0.262 0.282 0.28 0.192 0.302 ...