## ----style, echo = FALSE, results = 'asis'------------------------------------ BiocStyle::markdown() ## ----env, message = FALSE, warning = FALSE, echo = FALSE---------------------- library("vsclust") library("MultiAssayExperiment") ## ----eval=FALSE--------------------------------------------------------------- # # uncomment in case you have not installed vsclust yet # #if (!require("BiocManager", quietly = TRUE)) # # install.packages("BiocManager") # #BiocManager::install("vsclust") ## ----------------------------------------------------------------------------- #### Input parameters, only read when now parameter file was provided ##### ## All principal parameters for running VSClust can be defined as in the ## shiny app at computproteomics.bmb.sdu.dk/Apps/VSClust # name of study Experiment <- "miniACC" # Paired or unpaired statistical tests when carrying out LIMMA for # statistical testing isPaired <- FALSE # Number of threads to accelerate the calculation (use 1 in doubt) cores <- 1 # If 0 (default), then automatically estimate the cluster number for the # vsclust run from the Minimum Centroid Distance PreSetNumClustVSClust <- 0 # If 0 (default), then automatically estimate the cluster number for the # original fuzzy c-means from the Minimum Centroid Distance PreSetNumClustStand <- 0 # max. number of clusters when estimating the number of clusters. # Higher numbers can drastically extend the computation time. maxClust <- 10 ## ----fig.width = 12----------------------------------------------------------- data(miniACC, package="MultiAssayExperiment") # log-transformation and remove of -Inf values logminiACC <- log2(assays(miniACC)$RNASeq2GeneNorm) logminiACC[!is.finite(logminiACC)] <- NA # normalize to median logminiACC <- t(t(logminiACC) - apply(logminiACC, 2, median, na.rm=TRUE)) miniACC2 <- c(miniACC, log2rnaseq = logminiACC, mapFrom=1L) boxplot(logminiACC) #### running statistical analysis and estimation of individual variances statOut <- PrepareSEForVSClust(miniACC2, "log2rnaseq", coldatname = "OncoSign", isPaired=isPaired, isStat=TRUE) ## ----fig.width = 12----------------------------------------------------------- #### Estimate number of clusters with maxClust as maximum number clusters to run #### the estimation with ClustInd <- estimClustNum(statOut$dat, maxClust=maxClust, cores=cores) #### Use estimate cluster number or use own if (PreSetNumClustVSClust == 0) PreSetNumClustVSClust <- optimalClustNum(ClustInd) if (PreSetNumClustStand == 0) PreSetNumClustStand <- optimalClustNum(ClustInd, method="FCM") #### Visualize estimClust.plot(ClustInd) ## ----------------------------------------------------------------------------- #### Run clustering (VSClust and standard fcm clustering ClustOut <- runClustWrapper(statOut$dat, PreSetNumClustVSClust, NULL, VSClust=TRUE, cores=cores) Bestcl <- ClustOut$Bestcl VSClust_cl <- Bestcl ## ----------------------------------------------------------------------------- sessionInfo()