Contents

1 Load and process single cell data

Here we perform analysis of PBMCs from 8 individuals stimulated with interferon-β Kang, et al, 2018, Nature Biotech. We perform standard processing with dreamlet to compute pseudobulk before applying crumblr.

Here, single cell RNA-seq data is downloaded from ExperimentHub.

library(dreamlet)
library(muscat)
library(ExperimentHub)
library(scater)

# Download data, specifying EH2259 for the Kang, et al study
eh <- ExperimentHub()
sce <- eh[["EH2259"]]

sce$ind <- as.character(sce$ind)

# only keep singlet cells with sufficient reads
sce <- sce[rowSums(counts(sce) > 0) > 0, ]
sce <- sce[, colData(sce)$multiplets == "singlet"]

# compute QC metrics
qc <- perCellQCMetrics(sce)

# remove cells with few or many detected genes
ol <- isOutlier(metric = qc$detected, nmads = 2, log = TRUE)
sce <- sce[, !ol]

# set variable indicating stimulated (stim) or control (ctrl)
sce$StimStatus <- sce$stim

1.1 Aggregate to pseudobulk

Dreamlet creates the pseudobulk dataset:

# Since 'ind' is the individual and 'StimStatus' is the stimulus status,
# create unique identifier for each sample
sce$id <- paste0(sce$StimStatus, sce$ind)

# Create pseudobulk data by specifying cluster_id and sample_id for aggregating cells
pb <- aggregateToPseudoBulk(sce,
  assay = "counts",
  cluster_id = "cell",
  sample_id = "id",
  verbose = FALSE
)

1.2 Process data

Here we evaluate whether the observed cell proportions change in response to interferon-β.

library(crumblr)

# use dreamlet::cellCounts() to extract data
cellCounts(pb)[1:3, 1:3]
##          B cells CD14+ Monocytes CD4 T cells
## ctrl101      101             136         288
## ctrl1015     424             644         819
## ctrl1016     119             315         413
# Apply crumblr transformation
# cobj is an EList object compatable with limma workflow
# cobj$E stores transformed values
# cobj$weights stores precision weights
cobj <- crumblr(cellCounts(pb))

1.3 Analysis

Now continue on with the downstream analysis

library(variancePartition)

fit <- dream(cobj, ~ StimStatus + ind, colData(pb))
fit <- eBayes(fit)

topTable(fit, coef = "StimStatusstim", number = Inf)
##                         logFC    AveExpr          t     P.Value  adj.P.Val         B
## CD8 T cells       -0.25085170  0.0857175 -4.0787416 0.002436375 0.01949100 -1.279815
## Dendritic cells    0.37386979 -2.1849234  3.1619195 0.010692544 0.02738587 -2.638507
## CD14+ Monocytes   -0.10525402  1.2698117 -3.1226341 0.011413912 0.02738587 -2.709377
## B cells           -0.10478652  0.5516882 -3.0134349 0.013692935 0.02738587 -2.940542
## CD4 T cells       -0.07840101  2.0201947 -2.2318104 0.050869691 0.08139151 -4.128069
## FCGR3A+ Monocytes  0.07425165 -0.2567492  1.6647681 0.128337022 0.17111603 -4.935304
## NK cells           0.10270672  0.3797777  1.5181860 0.161321761 0.18436773 -5.247806
## Megakaryocytes     0.01377768 -1.8655172  0.1555131 0.879651456 0.87965146 -6.198336

Given the results here, we see that CD8 T cells at others change relative abundance following treatment with interferon-β.

2 Session Info

## R Under development (unstable) (2025-03-13 r87965)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.2 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so 
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0  LAPACK version 3.12.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB             
##  [4] LC_COLLATE=C               LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
## [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## time zone: America/New_York
## tzcode source: system (glibc)
## 
## attached base packages:
## [1] stats4    parallel  stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] muscData_1.21.0             scater_1.35.4               scuttle_1.17.0             
##  [4] ExperimentHub_2.15.0        AnnotationHub_3.15.0        BiocFileCache_2.15.1       
##  [7] dbplyr_2.5.0                muscat_1.21.0               dreamlet_1.5.1             
## [10] SingleCellExperiment_1.29.2 SummarizedExperiment_1.37.0 Biobase_2.67.0             
## [13] GenomicRanges_1.59.1        GenomeInfoDb_1.43.4         IRanges_2.41.3             
## [16] S4Vectors_0.45.4            BiocGenerics_0.53.6         generics_0.1.3             
## [19] MatrixGenerics_1.19.1       matrixStats_1.5.0           lubridate_1.9.4            
## [22] forcats_1.0.0               stringr_1.5.1               dplyr_1.1.4                
## [25] purrr_1.0.4                 readr_2.1.5                 tidyr_1.3.1                
## [28] tibble_3.2.1                tidyverse_2.0.0             glue_1.8.0                 
## [31] HMP_2.0.1                   dirmult_0.1.3-5             variancePartition_1.37.2   
## [34] BiocParallel_1.41.5         limma_3.63.11               crumblr_0.99.21            
## [37] ggplot2_3.5.1               BiocStyle_2.35.0           
## 
## loaded via a namespace (and not attached):
##   [1] GSEABase_1.69.1           progress_1.2.3            Biostrings_2.75.4        
##   [4] TH.data_1.1-3             vctrs_0.6.5               digest_0.6.37            
##   [7] png_0.1-8                 corpcor_1.6.10            shape_1.4.6.1            
##  [10] ggrepel_0.9.6             mixsqp_0.3-54             parallelly_1.43.0        
##  [13] permute_0.9-7             magick_2.8.6              MASS_7.3-65              
##  [16] reshape2_1.4.4            SQUAREM_2021.1            foreach_1.5.2            
##  [19] withr_3.0.2               xfun_0.51                 ggfun_0.1.8              
##  [22] survival_3.8-3            memoise_2.0.1             ggbeeswarm_0.7.2         
##  [25] emmeans_1.11.0            tidytree_0.4.6            zoo_1.8-13               
##  [28] GlobalOptions_0.1.2       gtools_3.9.5              KEGGgraph_1.67.0         
##  [31] prettyunits_1.2.0         KEGGREST_1.47.0           httr_1.4.7               
##  [34] globals_0.16.3            ashr_2.2-63               UCSC.utils_1.3.1         
##  [37] babelgene_22.9            curl_6.2.2                ScaledMatrix_1.15.0      
##  [40] GenomeInfoDbData_1.2.14   SparseArray_1.7.7         xtable_1.8-4             
##  [43] doParallel_1.0.17         evaluate_1.0.3            S4Arrays_1.7.3           
##  [46] Rfast_2.1.5.1             hms_1.1.3                 bookdown_0.42            
##  [49] irlba_2.3.5.1             colorspace_2.1-1          filelock_1.0.3           
##  [52] magrittr_2.0.3            Rgraphviz_2.51.9          viridis_0.6.5            
##  [55] ggtree_3.15.0             lattice_0.22-6            future.apply_1.11.3      
##  [58] scattermore_1.2           XML_3.99-0.18             pillar_1.10.1            
##  [61] nlme_3.1-168              iterators_1.0.14          caTools_1.18.3           
##  [64] compiler_4.6.0            beachmat_2.23.7           stringi_1.8.7            
##  [67] rmeta_3.0                 minqa_1.2.8               plyr_1.8.9               
##  [70] msigdbr_10.0.1            crayon_1.5.3              abind_1.4-8              
##  [73] truncnorm_1.0-9           blme_1.0-6                metadat_1.4-0            
##  [76] gridGraphics_0.5-1        locfit_1.5-9.12           bit_4.6.0                
##  [79] mathjaxr_1.6-0            sandwich_3.1-1            codetools_0.2-20         
##  [82] multcomp_1.4-28           BiocSingular_1.23.0       bslib_0.9.0              
##  [85] GetoptLong_1.0.5          mime_0.13                 remaCor_0.0.18           
##  [88] splines_4.6.0             circlize_0.4.16           Rcpp_1.0.14              
##  [91] sparseMatrixStats_1.19.0  EnrichmentBrowser_2.37.0  knitr_1.50               
##  [94] blob_1.2.4                clue_0.3-66               BiocVersion_3.21.1       
##  [97] lme4_1.1-37               fs_1.6.5                  listenv_0.9.1            
## [100] DelayedMatrixStats_1.29.1 Rdpack_2.6.3              ggplotify_0.1.2          
## [103] estimability_1.5.1        Matrix_1.7-3              rpart.plot_3.1.2         
## [106] statmod_1.5.0             tzdb_0.5.0                fANCOVA_0.6-1            
## [109] pkgconfig_2.0.3           tools_4.6.0               cachem_1.1.0             
## [112] RhpcBLASctl_0.23-42       rbibutils_2.3             RSQLite_2.3.9            
## [115] viridisLite_0.4.2         DBI_1.2.3                 numDeriv_2016.8-1.1      
## [118] zigg_0.0.2                fastmap_1.2.0             rmarkdown_2.29           
## [121] scales_1.3.0              grid_4.6.0                broom_1.0.8              
## [124] sass_0.4.9                patchwork_1.3.0           coda_0.19-4.1            
## [127] BiocManager_1.30.25       graph_1.85.3              zenith_1.9.2             
## [130] rpart_4.1.24              farver_2.1.2              reformulas_0.4.0         
## [133] aod_1.3.3                 mgcv_1.9-1                yaml_2.3.10              
## [136] cli_3.6.4                 lifecycle_1.0.4           mashr_0.2.79             
## [139] glmmTMB_1.1.10            mvtnorm_1.3-3             backports_1.5.0          
## [142] annotate_1.85.0           timechange_0.3.0          gtable_0.3.6             
## [145] rjson_0.2.23              metafor_4.8-0             ape_5.8-1                
## [148] jsonlite_2.0.0            edgeR_4.5.10              bitops_1.0-9             
## [151] bit64_4.6.0-1             assertthat_0.2.1          yulab.utils_0.2.0        
## [154] vegan_2.6-10              BiocNeighbors_2.1.3       RcppParallel_5.1.10      
## [157] jquerylib_0.1.4           pbkrtest_0.5.3            lazyeval_0.2.2           
## [160] htmltools_0.5.8.1         sctransform_0.4.1         rappdirs_0.3.3           
## [163] tinytex_0.56              XVector_0.47.2            RCurl_1.98-1.17          
## [166] treeio_1.31.0             gridExtra_2.3             EnvStats_3.0.0           
## [169] boot_1.3-31               TMB_1.9.17                invgamma_1.1             
## [172] R6_2.6.1                  DESeq2_1.47.5             gplots_3.2.0             
## [175] labeling_0.4.3            cluster_2.1.8.1           aplot_0.2.5              
## [178] nloptr_2.2.1              DelayedArray_0.33.6       tidyselect_1.2.1         
## [181] vipor_0.4.7               AnnotationDbi_1.69.0      future_1.34.0            
## [184] rsvd_1.0.5                munsell_0.5.1             KernSmooth_2.23-26       
## [187] data.table_1.17.0         ComplexHeatmap_2.23.1     RColorBrewer_1.1-3       
## [190] rlang_1.1.5               lmerTest_3.1-3            beeswarm_0.4.0