
Package ‘iGC’
December 19, 2024

Type Package

Title An integrated analysis package of Gene expression and Copy
number alteration

Version 1.37.0

Description This package is intended to identify differentially
expressed genes driven by Copy Number Alterations from samples
with both gene expression and CNA data.

biocViews Software, Biological Question, DifferentialExpression,
GenomicVariation, AssayDomain, CopyNumberVariation,
GeneExpression, ResearchField, Genetics, Technology,
Microarray, Sequencing, WorkflowStep, MultipleComparison

License GPL-2

URL http://github.com/ccwang002/iGC

BugReports http://github.com/ccwang002/iGC/issues

VignetteBuilder knitr

Enhances doMC

Suggests BiocStyle, knitr, rmarkdown

Imports plyr, data.table

Depends R (>= 3.2.0)

LazyData true

NeedsCompilation no

Author Yi-Pin Lai [aut], Liang-Bo Wang [aut, cre], Tzu-Pin Lu [aut],
Eric Y. Chuang [aut]

Maintainer Liang-Bo Wang <r02945054@ntu.edu.tw>

git_url https://git.bioconductor.org/packages/iGC

git_branch devel

git_last_commit 9bbfe28

git_last_commit_date 2024-10-29

Repository Bioconductor 3.21

Date/Publication 2024-12-18

1

http://github.com/ccwang002/iGC
http://github.com/ccwang002/iGC/issues

2 create_gene_cna

Contents

create_gene_cna . 2
create_gene_exp . 4
create_sample_desc . 6
direct_gene_cna . 7
find_cna_driven_gene . 9
hg19DBNM . 11
iGC . 12

Index 13

create_gene_cna Load and map CNA gain/loss onto human gene location by genome
reference

Description

The function reads through in all sample CNA data given by the sample description sample_desc
and returns a joint CNA gain/loss table based on gene regions across samples.

Usage

create_gene_cna(sample_desc, gain_threshold = log2(2.5) - 1,
loss_threshold = log2(1.5) - 1, read_fun = NULL, progress = TRUE,
progress_width = 48, parallel = FALSE, ...)

Arguments

sample_desc data.table object created by create_sample_desc.

gain_threshold CNA expression above this will be considered as gain region. By default log2 2.5−
1

loss_threshold CNA expression below this will be considered as loss region. By default log2 1.5−
1

read_fun Custom reader function, see its own section for more detail.

progress Whether to display a progress bar. By default TRUE.

progress_width The text width of the shown progress bar. By default is 48 chars wide.

parallel Enable parallelism by plyr. One has to specify a parallel engine beforehand. See
example for more information.

... Arguments passed to the custom reader function specified in read_fun.

create_gene_cna 3

Details

A gene is considered to have CNA gain if the overlapped CNA record expression is higher than the
given threshold. Similarly, a gene is considered CNA loss if the overlapped CNA record is lower
than the given threshold. If multiple CNA records map onto the same gene region with both gain
and loss, the majority wins. If none of the records map to the gene, NA is given.

By default it assumes the data to be of TCGA level 3 file format. For other data formats (e.g. raw
data or other experiments from GEO), one should implement a custom reader function that accepts
the filepath as the first argument. See section Custom reader function for full specification.

Currently the package ships a custom genome reference hg19, hg19DBNM, for gene region look
up. Each gene’s region is defined by the widest splicing form it has in NCBI curated records. The
defined region includes intron regions. This limitation may change in the future.

Value

data.table of CNA gain/loss on each gene region for all samples, whose rows represent regions of
genes and columns represent sample names. First column GENE contains the corresponding gene
names.

Custom reader function

Custom reader function is given by read_fun = your_reader_fun. It takes the filepath to CNA data
as the first argument and returns a data.table with at least the following four columns: Chromosome,
Start, End, and Segment_Mean of type character, integer, integer and numeric respectively.

Rest arguments of create_gene_cna(...) will be passed to this reader function.

Note: all string-like columns should NOT be of type factor. Remember to set stringsAsFactors
= FALSE.

See Also

read.table and fread for custom reader function implementation; create_sample_desc for cre-
ating sample description. If the gene information already exists in the data, try direct_gene_cna to
skip the genome reference lookup.

Examples

Use first three samples of the builtin dataset

sample_root <- system.file("extdata", package = "iGC")
sample_desc_pth <- file.path(sample_root, "sample_desc.csv")
sample_desc <- create_sample_desc(

sample_desc_pth, sample_root=sample_root
)[1:3]

Define custom reader function for TCGA level 3 gene exp. data

my_cna_reader <- function(cna_filepath) {
cna <- data.table::fread(cna_filepath, sep = '\t', header = TRUE)
data.table::setnames(

4 create_gene_exp

cna,
c("Sample", "Chromosome", "Start", "End", "Num_Probes", "Segment_Mean")

)
pick only the needed columns
cna[, .(Chromosome, Start, End, Segment_Mean)]

}

Read all samples' CNA data and combined as a single table

gene_cna <- create_gene_cna(
sample_desc,
gain_threshold = log2(2.3) - 1, loss_threshold = log2(1.7) - 1,
read_fun = my_cna_reader,

)
gene_cna[GENE %in% c("BRCA2", "TP53", "SEMA5A"),]

Not run:
To boost the speed, utilize parallelization

doMC::registerDoMC(4) # number of CPU cores
gene_cna <- create_gene_cna(

sample_desc,
gain_threshold = log2(2.3) - 1, loss_threshold = log2(1.7) - 1,
read_fun = my_cna_reader,
parallel = TRUE

)

End(Not run)

create_gene_exp Create an joint gene expression table of all samples

Description

The function reads in all gene expression data given by the sample description sample_desc and
return a joint expression table of all samples.

Usage

create_gene_exp(sample_desc, read_fun = NULL, progress = TRUE,
progress_width = 48, ...)

Arguments

sample_desc data.table object created by create_sample_desc.

read_fun Custom reader function, see its own section for more detail.

progress Whether to display a progress bar. By default TRUE.

create_gene_exp 5

progress_width The text width of the shown progress bar. By default is 48 chars wide.

... Arguments passed to the custom reader function specified in read_fun.

Details

By default it assumes the data to be of TCGA level 3 file format. However, nearly all real world
data fail to have the same format as TCGA. In this case, one needs to tell the function how to parse
the data by implementing a custom reader function that accepts the filepath as the first argument.
See Detail section for full specification. The function naively concatenates all return expression as
if all gene expressions are stated in the same gene order as columns in a new data.table.

Value

data.table of all samples gene expression, whose rows are gene expression and columns are sample
names. First column GENE contains the corresponding gene names.

Custom reader function

Custom reader function is given by read_fun = your_reader_fun. It takes the filepath as the first
argument and return a data.table with the first two columns being GENE and Expression of type
character and double.

The output joint gene expression table has first column GENE store the gene name, which are are
determined by the first sample being evaluated.

Rest arguments of create_gene_exp(...) will be passed to this reader function.

Note: all string-like columns should NOT be of type factor. Remember to set stringsAsFactors
= FALSE.

Note

The function assumes row order for all samples’ gene expressions are the same.

See Also

read.table and fread for custom reader function implementation; create_sample_desc for cre-
ating sample description.

Examples

Use first three samples of the builtin dataset

sample_root <- system.file("extdata", package = "iGC")
sample_desc_pth <- file.path(sample_root, "sample_desc.csv")
sample_desc <- create_sample_desc(

sample_desc_pth, sample_root=sample_root
)[1:3]

Define custom reader function for TCGA level 3 data
my_gene_exp_reader <- function(ge_filepath) {

gene_exp <- read.table(

6 create_sample_desc

ge_filepath,
header = FALSE, skip = 2,
na.strings = "null",
colClasses = c("character", "double")

)
dt <- data.table::as.data.table(gene_exp)
data.table::setnames(dt, c("GENE", "Expression"))

}
gene_exp <- create_gene_exp(

sample_desc,
read_fun = my_gene_exp_reader,
progress_width = 60

)
gene_exp[1:5]

create_sample_desc Create sample description table containing all required inputs

Description

Each sample will have a unique name along with a pair of CNA and gene expression file. This
function generates a table of sample descriptions by either reading an external CSV file or specifying
them through separate arugments in same order.

Usage

create_sample_desc(sample_desc_filepath = NULL, sample_names = NULL,
cna_filepaths = NULL, ge_filepaths = NULL, sample_root = NULL)

Arguments

sample_desc_filepath

external sample description CSV file having at least these three columns: Sample,
CNA_filepath, and GE_filepath. Note that the column names must be given
as is.

sample_names character vector of distinct sample names. Samples will be referenced by the
given name through out the analysis process. They should be valid R data.table
column names.

cna_filepaths character vector of filepaths to CNA data.

ge_filepaths character vector of filepaths to gene expression data.

sample_root path to the root of sample data. If given, this path will be appended before all
given filepaths.

Value

data.table of sample description having the following columns in order: Sample, CNA_filepath,
and GE_filepath. Each row contains a sample’s unique name and the corresponding filepaths to
CNA and gene expression data.

direct_gene_cna 7

Note

One could convert the relative file paths into absolute paths by passing the root folder path to
sample_root.

If for some special reasons, for example gene expression of all samples have been collected or the
CNA records for each gene exist, but do not have the file paths to either CNA or gene expression
data, pass it with empty character vector of correct length, such as rep('', num_samples).

Examples

Custom sample description by specifying separate arguments

sample_names <- letters[1:5]
sample_desc <- create_sample_desc(

sample_names = sample_names,
cna_filepaths = file.path('cna', paste0(sample_names, '.csv')),
ge_filepaths = file.path('ge', paste0(sample_names, '.txt'))

)
sample_desc

Prepend the file path with a root directory /path/to/sample

create_sample_desc(
sample_names = sample_desc$Sample,
cna_filepaths = sample_desc$CNA_filepath,
ge_filepaths = sample_desc$GE_filepath,
sample_root = '/path/to/sample'

)

Create by reading a sample description CSV file

sample_desc_pth <- system.file("extdata", "sample_desc.csv", package = "iGC")
sample_desc <- create_sample_desc(sample_desc_pth)

Not run:
Read a external description and append the given file paths
create_sample_desc('/path/to/desc.csv', sample_root='/path/to/sample/root')

End(Not run)

direct_gene_cna Load the existed CNA gain/loss based on gene location.

Description

This function aims to complement create_gene_cna. Instead of mapping CNA records onto genes
by genome reference, it reads the existed column containing the gene each CNA lies on. Two func-
tions share the same interface but they have different requirement for the read_fun implementation.

8 direct_gene_cna

Usage

direct_gene_cna(sample_desc, gain_threshold = log2(2.5) - 1,
loss_threshold = log2(1.5) - 1, read_fun = NULL, progress = TRUE,
progress_width = 48, parallel = FALSE, ...)

Arguments

sample_desc data.table object created by create_sample_desc.

gain_threshold CNA expression above this will be considered as gain region. By default log2 2.5−
1

loss_threshold CNA expression below this will be considered as loss region. By default log2 1.5−
1

read_fun Custom reader function, see its own section for more detail.

progress Whether to display a progress bar. By default TRUE.

progress_width The text width of the shown progress bar. By default is 48 chars wide.

parallel Enable parallelism by plyr. One has to specify a parallel engine beforehand. See
example for more information.

... Arguments passed to the custom reader function specified in read_fun.

Value

data.table of CNA gain/loss on each gene region for all samples, whose rows represent regions of
genes and columns are sample names. First column GENE contains the corresponding gene names.

Custom reader function

Similar to that of create_gene_cna, the reader function takes the filepath as the first argument. It
will return a data.table with at least two columns: GENE and Segment_Mean of type character and
numeric respectively.

See Also

create_gene_cna

Examples

require(data.table)

Create a CNA dataset that has been already mapped onto gene regions

cna_geo_list = list(
sample_A = data.table(

GENE = c("TP53", "BRCA2"),
Segment_Mean = c(1.05, -2.03)

),
sample_B = data.table(

GENE = c("TP53", "BRCA2", "NDPH1"),
Segment_Mean = c(0.38, -1.71, 2.6)

find_cna_driven_gene 9

)
)
sample_desc <- data.table(

Sample = paste("sample", c("A", "B"), sep = "_")
)
sample_desc$CNA_filepath <- sample_desc$Sample

Example code for reading

read_cna_geo <- function(pth) {
For demonstration, file reading silently redirects
to list lookup
cna_geo_list[[pth]]

}
gene_cna <- direct_gene_cna(

sample_desc,
read_fun = read_cna_geo, progress = FALSE

)
gene_cna

find_cna_driven_gene Perform an integrated analysis of gene expression (GE) and copy num-
ber alteration (CNA)

Description

The function finds CNA-driven differentially expressed gene and returns the corresponding p-value,
false discovery rate, and associated statistics. The result includes three tables which collects infor-
mation for gain-, loss-, and both-driven genes.

Usage

find_cna_driven_gene(gene_cna, gene_exp, gain_prop = 0.2, loss_prop = 0.2,
progress = TRUE, progress_width = 32, parallel = FALSE)

Arguments

gene_cna Joint CNA table from create_gene_cna.

gene_exp Joint gene expression table from create_gene_exp.

gain_prop Minimum proportion of the gain samples to be consider CNA-gain. Default is
0.2.

loss_prop Minimum proportion of the loss samples to be consider CNA-loss. Default is
0.2.

progress Whether to display a progress bar. By default TRUE.

progress_width The text width of the shown progress bar. By default is 48 chars wide.

parallel Enable parallelism by plyr. One has to specify a parallel engine beforehand. See
example for more information.

10 find_cna_driven_gene

Details

The gene is considered CNA-gain if the proportion of the sample exhibiting gain exceeds the thresh-
old gain_prop, that is, number of samples having gain_loss = 1. Reversely, the gene is considered
CNA-loss if %samples that gain_loss = -1 is below a given threshold loss_prop.

When performing the t-test, sample grouping depends on the analysis scenario being either CNA-
gain or CNA-loss driven. In CNA-gain driven scenario, two groups, CNA-gain and the other sam-
ples, are made. In CNA-loss driven scenario, group CNA-loss and the others are made. Genes that
appear in both scenarios will be collected into a third table and excluded from their original tables.

See the vignette for usage of this function by a thorough example.

Value

List of three data.table objects for CNA-driven scenarios: gain, loss, and both, which can be ac-
cessed by names: ‘gain_driven‘, ‘loss_driven‘ and ‘both‘.

Examples

require(data.table)

Create gene_exp and gene_cna manually. The following shows an example
consisting of 3 genes (BRCA2, TP53, and GNPAT) and 5 samples (A to E).

gene_exp <- data.table(
GENE = c("BRCA2", "TP53", "GNPAT"),
A = c(-0.95, 0.89, 0.21), B = c(1.72, -0.05, NA),
C = c(-1.18, 1.15, 2.47), D = c(-1.24, -0.07, 1.2),
E = c(1.01, 0.93, 1.54)

)
gene_cna <- data.table(

GENE = c("BRCA2", "TP53", "GNPAT"),
A = c(1, 1, NA), B = c(-1, -1, 1),
C = c(1, -1, 1), D = c(1, -1, -1),
E = c(0, 0, -1)

)

Find CNA-driven genes

cna_driven_genes <- find_cna_driven_gene(
gene_cna, gene_exp, progress=FALSE

)

Gain driven genes
cna_driven_genes$gain_driven

Loss driven genes
cna_driven_genes$loss_driven

Gene shown in both gain and loss records
cna_driven_genes$both

hg19DBNM 11

hg19DBNM hg19-RefSeq

Description

The human genome reference used here is RefSeq transcripts in version hg19 from UCSC Genome
Browser. The transcripts with NM marker ID, which are protein-codeing, were selected to be our
reference database and provided as hg19DBNM.rda.

Usage

hg19DBNM

Format

A data frame with 39997 rows and 7 variables:

Marker.ID RefSeq name with its corrsponding gene symbol

Chromosome 1-22, X and Y

Start starting position, in basepair number

Stop ending position, in basepair number

Strand positive or negative strand, in + or - symbols

Gene.Symbol Gene name

Transcript RefSeq name

Details

This reference provides region information, including chromosome number, starting position, end-
ing position, strand and gene symbols, for converting copy number alteration data into human genes.

Value

data.table

Source

UCSC Genome Browser: http://hgdownload.cse.ucsc.edu/downloads.html

http://hgdownload.cse.ucsc.edu/downloads.html

12 iGC

iGC iGC: an integrated analysis package of gene expression and copy num-
ber alteration

Description

The iGC package is used to identify CNA-driven differentially expressed genes. The iGC pack-
age provides four categories of important functions: ‘create_sample_desc‘, ‘create_gene_ex‘, ‘cre-
ate_gene_cna‘ and ‘find_cna_drive_gene‘.

create_sample_desc

The create_sample_desc function is provided for creating a sample description table containing all
required inputs.

create_gene_exp function

The create_gene_exp function is used to rearrange the input gene expression files into a gene ex-
pression list of entire samples.

create_gene_cna function

The create_gene_cna function maps CNA data to human genes and then defines the mapped human
genes as CN gain or loss based on the CN threshold, whose default values are set as 2.5 for gain
and 1.5 for loss. These mapped genes will be assigned values in +1, -1 or 0, where +1 stands for
CNA-gain, -1 stands for CNA-loss and 0 stands for neutral.

find_cna_driven_gene function

The find_cna_driven_gene function identifies CNA-driven differentially expressed genes. The input
mapped genes remain for further analyses if its ratio of the number of CN changed samples, CNA-
gain (G) or CNA-loss (L), to the number of total samples is larger than a given threshold. Here the
default setting is that only genes showing CNAs in at least 20 statistical tests, T-test and Wilcoxon
rank sum test, are performed in the GE level by classifying the samples as G and L plus Nertral
(N) groups or L and G plus N groups, depending on the CN of the interested gene increases or
decreases.

Index

∗ datasets
hg19DBNM, 11

create_gene_cna, 2, 7–9
create_gene_exp, 4, 9
create_sample_desc, 2–5, 6, 8

data.table, 2, 8
direct_gene_cna, 3, 7

find_cna_driven_gene, 9
fread, 3, 5

hg19DBNM, 3, 11

iGC, 12
iGC-package (iGC), 12

read.table, 3, 5

13

	create_gene_cna
	create_gene_exp
	create_sample_desc
	direct_gene_cna
	find_cna_driven_gene
	hg19DBNM
	iGC
	Index

