
Package ‘dcanr’
December 18, 2024

Title Differential co-expression/association network analysis

Version 1.23.0

Description This package implements methods and an evaluation framework to infer differential co-
expression/association networks. Various methods are implemented and can be evaluated us-
ing simulated datasets. Inference of differential co-expression networks can allow identifica-
tion of networks that are altered between two conditions (e.g., health and disease).

biocViews NetworkInference, GraphAndNetwork, DifferentialExpression,
Network

Depends R (>= 3.6.0)

License GPL-3

Encoding UTF-8

LazyData false

Imports igraph, foreach, plyr, stringr, reshape2, methods, Matrix,
graphics, stats, RColorBrewer, circlize, doRNG

Suggests EBcoexpress, testthat, EBarrays, GeneNet, mclust, minqa,
SummarizedExperiment, Biobase, knitr, rmarkdown, BiocStyle,
edgeR

RoxygenNote 7.2.0

Collate 'LDGM.R' 'dcZscore.R' 'dcanr.R' 'statistical_tests.R'
'performance_metrics.R' 'multtest_adjust.R'
'evaluation_functions.R' 'inference_methods.R'
'inference_methods_generic.R' 'network_inference.R' 'sim102.R'
'simulation_accessors.R' 'simulation_plot.R'

VignetteBuilder knitr

Enhances parallel, doSNOW, doParallel

URL https://davislaboratory.github.io/dcanr/,

https://github.com/DavisLaboratory/dcanr

BugReports https://github.com/DavisLaboratory/dcanr/issues

git_url https://git.bioconductor.org/packages/dcanr

git_branch devel

1

https://davislaboratory.github.io/dcanr/
https://github.com/DavisLaboratory/dcanr
https://github.com/DavisLaboratory/dcanr/issues

2 dcanr-package

git_last_commit 1a99f0d

git_last_commit_date 2024-10-29

Repository Bioconductor 3.21

Date/Publication 2024-12-18

Author Dharmesh D. Bhuva [aut, cre] (ORCID:
<https://orcid.org/0000-0002-6398-9157>)

Maintainer Dharmesh D. Bhuva <bhuva.d@wehi.edu.au>

Contents
dcanr-package . 2
cor.pairs . 4
dcAdjust . 4
dcEvaluate . 5
dcMethods . 6
dcNetwork . 7
dcPipeline . 8
dcScore . 10
dcTest . 12
dcZscore . 13
getSimData . 14
mi.ap . 16
perfMethods . 16
performanceMeasure . 17
plotSimNetwork . 18
sim102 . 19

Index 20

dcanr-package dcanr: Differential co-expression/association network analysis

Description

Methods and an evaluation framework for the inference of differential co-expression/association
networks.

Details

There are three categories of functions available

1. Differential co-expression methods (DC) - These functions are used to perform a differential
co-expression analysis on experimental data with binary conditions.

2. Functions to evaluate DC methods - These functions are used to evaluate methods imple-
mented in the package and novel methods on simulated data. Expression data is simulated for
2 conditions, wild-type and knock-down of given genes.

3. By-products of implementations

https://orcid.org/0000-0002-6398-9157

dcanr-package 3

Differential co-expression methods (DC)

• dcMethods

• dcScore

• dcTest

• dcAdjust

• dcNetwork

Functions to evaluate DC methods

Accessors of simulated data:

• getConditionNames

• getSimData

• getTrueNetwork

• plotSimNetwork

Functions for evaluating inference methods

• dcPipeline

• dcEvaluate

By-products of implementations

These are functions used in the package but have further uses in general:

• cor.pairs - a faster implementation of pairwise correlation computation

• mi.ap - pairwise computation of mutual information MI with data discretisation performed
using adaptive partitioning

• perfMethods - available performance metrics

• performanceMeasure - performance measures of prediction algorithms. Predictions have to
be binary

Author(s)

Maintainer: Dharmesh D. Bhuva <bhuva.d@wehi.edu.au> (ORCID)

See Also

Useful links:

• https://davislaboratory.github.io/dcanr/

• https://github.com/DavisLaboratory/dcanr

• Report bugs at https://github.com/DavisLaboratory/dcanr/issues

https://orcid.org/0000-0002-6398-9157
https://davislaboratory.github.io/dcanr/
https://github.com/DavisLaboratory/dcanr
https://github.com/DavisLaboratory/dcanr/issues

4 dcAdjust

cor.pairs Fast pairwise correlation estimation

Description

Fast estimation of pairwise correlation coefficients.

Usage

cor.pairs(emat, cor.method = c("pearson", "spearman"))

Arguments

emat a numeric matrix
cor.method a character, specifying the method to use for estimation. Possible values are

’pearson’ (default) and ’spearman’

Value

a numeric matrix with estimated correlation coefficients

Examples

x <- matrix(rnorm(200), 100, 2)
cor.pairs(x)
cor.pairs(x, cor.method = 'spearman')

dcAdjust Adjust for multiple testing in differential association analysis

Description

Adjust for multiple hypothesis testing after performing statistical tests using dcTest. This can be
performed using a method provided by the users. p.adjust is used by default.

Usage

dcAdjust(dcpvals, f = stats::p.adjust, ...)

Arguments

dcpvals a matrix, the result of the dcTest function. The results should be passed as
produced by the function and not modified in intermediate steps

f a function, the function to be used for adjustment. p.adjust from the stats
package is the default with the specific adjustment method ’fdr’ used. The range
of available methods can be accessed using p.adjust.methods. Custom func-
tions should accept a numeric vector of p-values as the first argument

... additional parameters to the adjustment function such as method

dcEvaluate 5

Details

Ensure that the p-value matrix passed to this function is the one produced by dcTest. Any modifi-
cation to the result matrix will result in failure of the function.

This method applies the adjustment method only to one triangle of the matrix to ensure adjust-
ment is not performed for duplicated tests (symmetric matrix). As results from the DiffCoEx and
EBcoexpress do not produce p-values, this method does not change anything thereby returning the
original matrix.

Value

a matrix, of adjusted p-values (or scores in the case of DiffCoEx and EBcoexpress) representing
significance of differential associations.

See Also

dcTest p.adjust

Examples

x <- matrix(rnorm(60), 2, 30)
cond <- rep(1:2, 15)
zscores <- dcScore(x, cond)
pvals <- dcTest(zscores, emat = x, condition = cond)
dcAdjust(pvals, p.adjust, method = 'fdr')

dcEvaluate Evaluate performance of DC methods on simulations

Description

Quantify the performance of a differential co-expression pipeline on simulated data.

Usage

dcEvaluate(
simulation,
dclist,
truth.type = c("association", "influence", "direct"),
perf.method = "f.measure",
combine = TRUE,
...

)

6 dcMethods

Arguments

simulation a list, storing data and results generated from simulations

dclist a list of igraphs, produced using dcPipeline

truth.type a character, specifying which level of the true network to retrieve: ’association’
(default), ’influence’ or ’direct’

perf.method a character, specifying the method to use. Available methods can be accessed
using perfMethods

combine a logical, indicating whether differential networks from independent knock-outs
should be treated as a single inference or independent inferences (defaults to
TRUE)

... additional parameters to be passed on to the performance metric method (see
performanceMeasure)

Value

a numeric, representing the performance metric. A single value if combine = TRUE and a named
vector otherwise.

See Also

dcPipeline, performanceMeasure, perfMethods

Examples

data(sim102)

#run a standard pipeline
resStd <- dcPipeline(sim102, dc.func = 'zscore')
dcEvaluate(sim102, resStd)
dcEvaluate(sim102, resStd, combine = FALSE)

dcMethods Get names of differential co-expression methods

Description

Returns a list of differential co-expression methods

Usage

dcMethods()

Value

names of methods implemented

dcNetwork 7

Examples

dcMethods()

dcNetwork Generate a differential network from a DC analysis

Description

Threshold the results from a differential co-expression analysis and create a differential network.

Usage

dcNetwork(dcscores, dcpvals = NULL, thresh = NULL, ...)

Arguments

dcscores a matrix, the result of the dcScore function. The results should be passed as
produced by the function and not modified in intermediate steps

dcpvals a matrix or NULL, raw or adjusted p-values resulting from dcTest or dcAdjust
respectively. Should be left NULL only if method is EBcoexpress or DiffCoEx

thresh a numeric, threshold to apply. If NULL, defaults to 0.1 for methods that generate a
p-value, 0.9 for posterior probabilities from EBcoexpress and 0.1 on the absolute
score from DiffCoEx

... see details

Details

No extra arguments required for this function. The ellipsis are used to allow flexibility in pipelines.

Value

an igraph object, representing the differential network. Scores are added as edge attributes with the
name ’score’

See Also

dcScore, dcTest, dcAdjust

Examples

#create data
set.seed(360)
x <- matrix(rnorm(120), 4, 30)
cond <- rep(1:2, 15)

#perform analysis - z-score
zscores <- dcScore(x, cond)

8 dcPipeline

pvals <- dcTest(zscores, emat = x, condition = cond)
pvals <- dcAdjust(pvals, p.adjust, method = 'fdr')
ig <- dcNetwork(zscores, pvals, 0.1)

#perform analysis - DiffCoEx
dcscores <- dcScore(x, cond, dc.method = 'diffcoex')
ig <- dcNetwork(dcscores, thresh = 0.001)

#plot the resulting differential co-expression network
igraph::plot.igraph(ig)

dcPipeline Run a DC pipeline on a simulation

Description

Run a differential co-expression pipeline on data from a simulation experiment. A default pipeline
can be used which consists of methods in the package or custom pipelines can be provided.

Usage

dcPipeline(
simulation,
dc.func = "zscore",
precomputed = FALSE,
continuous = FALSE,
cond.args = list(),
...

)

Arguments

simulation a list, storing data and results generated from simulations

dc.func a function or character. Character represents one of the method names from
dcMethods which is run with the default settings. A function can be used to
provide custom processing pipelines (see details)

precomputed a logical, indicating whether the precomputed inference should be used or a new
one computed (default FALSE)

continuous a logical, indicating whether binary or continuous conditions should be used
(default FALSE). No methods implemented currently use continuous conditions.
This is to allow custom methods that require continuous conditions

cond.args a list, containing condition-specific arguments for the DC inference pipeline.
See details

... additional parameters to dc.func

dcPipeline 9

Details

If dc.func is a character, the existing methods in the package will be run with their default param-
eters. The pipeline is as such: dcScore -> dcTest -> dcAdjust -> dcNetwork, resulting in a igraph
object. Parameters to the independent processing steps can also be provided to this function as
shown in the examples.

If precomputed is TRUE while dc.func is a character, pre-computed results will be used. These
can then be evaluated using dcEvaluate.

Custom pipelines need to be coded into a function which can then be provided instead of a character.
Functions must have the following structure:

function(emat, condition, ...)

They must return either an igraph object or an adjacency matrix stored in a base R ’matrix’ or the
S4 ’Matrix’ class, containing all genes in the expression matrix ’emat’. See examples for how the
in-built functions are combined into a pipeline.

If the pipeline (in-built or custom) requires condition-specific parameters to run, cond.args can
be used to pass these. For instance, LDGM requires lambda OR the number of edges in the tar-
get network to be specified for each inference/condition. For the latter case and with 3 different
conditions, this can be done by setting cond.args = list('ldgm.ntarget' = c(100, 140, 200)).
Non-specific arguments should be passed directly to the dcPipeline function call.

Value

a list of igraphs, representing the differential network for each independent condition (knock-out).

See Also

plot.igraph, dcScore, dcTest, dcAdjust, dcNetwork, dcMethods

Examples

data(sim102)

#run a standard pipeline
resStd <- dcPipeline(sim102, dc.func = 'zscore')

#run a standard pipeline and specify params
resParam <- dcPipeline(sim102, dc.func = 'zscore', cor.method = 'pearson')

#run a standard pipeline and specify condition-specific params
resParam <- dcPipeline(

sim102,
dc.func = 'diffcoex',
#arguments for the conditions ADR1 knockdown and UME6 knockdown resp.
cond.args = list(diffcoex.beta = c(6, 20))

)

#retrieve pre-computed results
resPrecomputed <- dcPipeline(sim102, dc.func = 'zscore', precomputed = TRUE)

#run a custom pipeline

10 dcScore

analysisInbuilt <- function(emat, condition, dc.method = 'zscore', ...) {
#compute scores
score = dcScore(emat, condition, dc.method, ...)
#perform statistical test
pvals = dcTest(score, emat, condition, ...)
#adjust tests for multiple testing
adjp = dcAdjust(pvals, ...)
#threshold and generate network
dcnet = dcNetwork(score, adjp, ...)

return(dcnet)
}
resCustom <- dcPipeline(sim102, dc.func = analysisInbuilt)

plot(resCustom[[1]])

dcScore Compute scores from differential association analysis

Description

Implementations and wrappers for existing implementations for methods inferring differential associations/co-
expression. This method requires a matrix of expression and a binary condition to compute the dif-
ferential association scores for all pairs of features (genes). Applications are not limited to analysis
of gene expression data and may be used for differential associations in general.

Usage

dcScore(emat, condition, dc.method, ...)

S4 method for signature 'matrix'
dcScore(emat, condition, dc.method = "zscore", ...)

S4 method for signature 'Matrix'
dcScore(emat, condition, dc.method = "zscore", ...)

S4 method for signature 'data.frame'
dcScore(emat, condition, dc.method = "zscore", ...)

S4 method for signature 'ExpressionSet'
dcScore(emat, condition, dc.method = "zscore", ...)

S4 method for signature 'SummarizedExperiment'
dcScore(emat, condition, dc.method = "zscore", ...)

S4 method for signature 'DGEList'
dcScore(emat, condition, dc.method = "zscore", ...)

dcScore 11

Arguments

emat a matrix, Matrix, data.frame, ExpressionSet, SummarizedExperiment or DGE-
List

condition a numeric, (with 1’s and 2’s representing a binary condition), a factor with 2
levels or a character representing 2 conditions

dc.method a character, representing the method to use. Use dcMethods() to get a list of
methods

... possible arguments are cor.method, diffcoex.beta, ebcoexpress.useBWMC,
ebcoexpress.plot, ldgm.lambda, ldgm.ntarget and ldgm.iter. See details

Details

When using data from sequencing experiments, make sure appropriate filtering for low counts and
data transformation has been performed. Not doing so will affect estimation of correlation coeffi-
cients which most methods rely on.

Additional method specific parameters can be supplied to the function. cor.method can be set
to either ’pearson’ (default) or ’spearman’ to determine the method to use for estimating correla-
tions. These are the two measures currently supported in the package. We recommend using the
’spearman’ correlation when dealing with sequencing data.

The beta parameter in the DiffCoEx method can be specified using diffcoex.beta (defaults to 6).
This enable soft thresholding of correlations similar to WGCNA.

EBcoexpress specific parameters include ebcoexpress.useBWMC (defaults to TRUE) representing
whether to use the bi-weight mid-correlation coefficient or not, and ebcoexpress.plot which plots
the diagnostic plots if set to TRUE (defaults to FALSE).

LDGM specific parameters include ldgm.lambda, ldgm.ntarget and ldgm.iter. ldgm.lambda
specifies the L1 regularisation parameter to use when fitting the model. This can be tuned and spec-
ified by the user. Alternatively, this can be tuned such that the resulting network has a specified
number of edges. In this case, ldgm.ntarget should be specified instead. ldgm.iter is the maxi-
mum number of iterations to perform when tuning ldgm.lambda using ldgm.ntarget (defaults to
50).

EBcoexpress and GGM-based are implemented by providing interfaces to, or using functions from
the EBcoexpress, GeneNet, and COSINE packages respectively. If using any of these methods,
please cite the appropriate packages and the appropriate methodology articles.

Value

a matrix, of scores/statistics representing differential associations; p-values will be returned if FTGI
is used and posterior probabilities if EBcoexpress is used.

See Also

dcMethods

12 dcTest

Examples

x <- matrix(rnorm(60), 2, 30)
cond <- rep(1:2, 15)
dcScore(x, cond) #defaults to zscore
dcScore(x, cond, dc.method = 'diffcoex')

dcTest Statistical test for differential association analysis

Description

Perform statistical tests for scores generated using dcScore. Selects appropriate tests for the differ-
ent methods used in computing scores. The exact test is selected based on the scoring method used
and cannot be manually specified. Available tests include the z-test and permutation tests. Parallel
computation supported for the permutation test.

Usage

dcTest(dcscores, emat, condition, ...)

Arguments

dcscores a matrix, the result of the dcScore function. The results should be passed as
produced by the function and not modified in intermediate steps

emat a matrix, data.frame, ExpressionSet, SummarizedExperiment or DGEList. This
should be the one passed to dcScore

condition a numeric, (with 1’s and 2’s representing a binary condition), a factor with 2
levels or a character representing 2 conditions. This should be the one passed to
dcScore

... see details

Details

Ensure that the score matrix passed to this function is the one produced by dcScore. Any modi-
fication to the result matrix will cause this function to fail. This is intended as the test need to be
performed on the entire score matrix, not subsets.

The appropriate test is chosen automatically based on the scoring method used. A z-test is per-
formed for the z-score method while no tests are performed for DiffCoEx, EBcoexpress and FTGI.
Permutation tests are performed for the remainder of methods by permutation sample labels. Statis-
tics from a permutation are pooled such that statistics from all scores are used to evaluate a single
observed score.

Additional method specific parameters can be supplied to the function when performing permuta-
tion tests. B specifies the number of permutations to be performed and defaults to 20.

If a cluster exists, computation in a permutation test will be performed in parallel (see examples).

dcZscore 13

Value

a matrix, of p-values (or scores in the case of DiffCoEx and EBcoexpress) representing signifi-
cance of differential associations. DiffCoEx will return scores as the publication specifies direct
thresholding of scores and EBcoexpress returns posterior probabilities.

See Also

dcMethods, dcScore

Examples

x <- matrix(rnorm(60), 2, 30)
cond <- rep(1:2, 15)
scores <- dcScore(x, cond, dc.method = 'mindy')
dcTest(scores, emat = x, condition = cond)

Not run:
#running in parallel
num_cores = 2
cl <- parallel::makeCluster(num_cores)
doSNOW::registerDoSNOW(cl) #or doParallel
set.seed(36) #for reproducibility
dcTest(scores, emat = x, condition = cond, B = 100)
parallel::stopCluster(cl)

End(Not run)

dcZscore DC analysis using the z-score method

Description

This function packs the entire DC analysis pipeline using the z-score method. It simplifies the
implementation of the analysis and increases the flexibility of the analysis (not just limited to all
pairwise comparisons).

Usage

dcZscore(
emat,
condition,
from = NULL,
to = NULL,
fdrthresh = 0.1,
cor.method = c("spearman", "pearson")

)

14 getSimData

Arguments

emat a matrix, Matrix, data.frame, ExpressionSet, SummarizedExperiment or DGE-
List

condition a numeric, (with 1’s and 2’s representing a binary condition), a factor with 2
levels or a character representing 2 conditions

from a character vector, with the names of nodes from which comparisons need to be
performed.

to a character vector, with the names of nodes to which comparisons need to be
performed.

fdrthresh a numeric, specifying the FDR cutoff to apply to the inferred network.

cor.method a character, either ’spearman’ (default) or ’pearson’ specifying the correlation
computation method to use.

Value

an igraph object, containing the differential coexpression network.

Examples

x <- matrix(rnorm(60), 10, 30)
rownames(x) = 1:10
cond <- rep(1:2, 15)
dcZscore(x, cond)
dcZscore(x, cond, to = 1:2)

getSimData Get data and conditions from a given knock-down (KD)

Description

Retrieves the simulated expression matrix and sample classification for a specific knock-down ex-
periment.

Usage

getSimData(simulation, cond.name = NULL, full = FALSE)

getConditionNames(simulation)

getTrueNetwork(
simulation,
cond.name = NULL,
truth.type = c("association", "influence", "direct"),
full = FALSE

)

getSimData 15

Arguments

simulation a list, storing data and results generated from simulations

cond.name a character, indicating the knock-down to use to derive conditions. Multiple
knock-downs (KDs) are performed per simulation. If NULL, the first KD is cho-
sen

full a logical, indicating whether genes associated with the condition should be ex-
cluded. Defaults to FALSE and is recommended

truth.type a character, specifying which level of the true network to retrieve: ’association’
(default), ’influence’ or ’direct’

Details

Genes discarded when full is FALSE are those that are solely dependent on the condition. These
genes are discarded from the analysis to focus on those that are differentially co-expressed, not
coordinately co-expressed.

The names of all genes knocked-out can be retrieved using getConditionNames.

The direct, influence and association networks represent different levels of true differential net-
works. The direct network contains differential regulatory interactions present in the original net-
work. The influence network includes upstream interactions and the association network includes
non-causative differential interactions.

Value

a list, containing emat, a matrix representing the expression data, condition, a numeric contain-
ing the classification of samples, and , condition_c, a numeric containing the expression levels
of the KD gene (continuous condition) for getSimData; the names of all genes that are KD for
getConditionNames; and an adjacency matrix for getTrueNetwork.

Functions

• getSimData: get the expression matrix and sample classification

• getConditionNames: get names of the conditions (KDs)

• getTrueNetwork: get the true differential network

See Also

dcScore

Examples

data(sim102)
KDs <- getConditionNames(sim102)

#get simulated data
simdata <- getSimData(sim102, KDs[2])
cond <- simdata$condition
emat <- simdata$emat

16 perfMethods

zscores <- dcScore(emat, cond)

#get the true network to evaluate against
truenet <- getTrueNetwork(sim102, KDs[2], truth.type = 'association')

mi.ap Mutual information using adaptive partitioning

Description

Computes the mutual information between all pairs of variables in the matrix (along the columns).
Variables are discretised using the adaptive partitioning algorithm

Usage

mi.ap(mat)

Arguments

mat a numeric matrix

Value

matrix of pairwise mutual information estimates

Examples

x <- matrix(rnorm(200), 100, 2)
mi.ap(x)

perfMethods Get names of performance metric methods

Description

Returns a list of performance metrics

Usage

perfMethods()

Value

names of methods implemented

Examples

perfMethods()

performanceMeasure 17

performanceMeasure Performance metrics to evaluate classification

Description

Quantify the performance of a classification algorithm. Predictions and truth both have to be binary.

Usage

performanceMeasure(pred, obs, perf.method = "f.measure", ...)

Arguments

pred a logical or numeric, where 0 and FALSE represent control, and, 1 and TRUE
represent cases

obs a logical or numeric, where 0 and FALSE represent control, and, 1 and TRUE
represent cases

perf.method a character, specifying the method to use. Available methods can be accessed
using perfMethods

... additional parameters to methods. see details

Details

The F-measure requires the beta parameter which can be specified using f.beta which defaults to
1 thereby computing the F1-measure.

Value

a numeric, representing the performance

See Also

perfMethods

Examples

pred <- sample(0:1, 100, replace = TRUE, prob = c(0.75, 0.25))
obs <- sample(0:1, 100, replace = TRUE, prob = c(0.75, 0.25))

#compute the F1 and F2 scores
f1 <- performanceMeasure(pred, obs)
f2 <- performanceMeasure(pred, obs, f.beta = 2)

18 plotSimNetwork

plotSimNetwork Plot source and true differential networks from simulations

Description

Plots either the source network or the true differential network for all KDs performed in the simu-
lation. KD nodes are coloured with their resulting differential networks coloured accordingly.

Usage

plotSimNetwork(
simulation,
what = c("source", "direct", "influence", "association"),
...

)

Arguments

simulation a list, storing data and results generated from simulations

what a character, indicating which network to retrieve, ’source’ (default), ’direct’,
’influence’ or ’association’

... additional parameters to plot.igraph

Details

The direct, influence and association networks represent different levels of true differential net-
works. The direct network contains differential regulatory interactions present in the original net-
work. The influence network includes upstream interactions and the association network includes
non-causative differential interactions.

Value

a plot of the network

See Also

plot.igraph

Examples

data(sim102)
plotSimNetwork(sim102)
plotSimNetwork(sim102, what = 'direct')
plotSimNetwork(sim102, what = 'influence')
plotSimNetwork(sim102, what = 'association')

sim102 19

sim102 Simulated expression data with knock-outs

Description

A dataset containing simulated expression dataset. Data is simulated using a dynamical systems
model from a network sampled from the S. Cerevisiae regulatory network. The dataset is a list
containing the results from the simulation, and other information generated subsequently.

Usage

sim102

Format

A named list with 14 elements:

simitr a numeric, indicating the iteration of the simulation (a total of 1000 were performed and
812 converged)

scores an S4 Matrix, containing vectorised inference scores of applying the methods implemented
in the package. These are precomputed predictions

inputmodels a named list, storing the parameters used to sample the initial values of input genes.
Proportions, means and variances of each gene is stored for each gene

staticnet an igraph object, storing the initial regulatory network (150 node network)
infnet an igraph object, representing the true differential network as determined using sensitivity

analysis of the model
netlayout a matrix (150 x 2), storing the (x, y) positions of nodes for laying out the graph
infdens a numeric, network density of the true differential association network
numinput a numeric, the number of input genes in the regulatory network. These are genes that

have no regulators therefore need to be pre-defined
numbimodal a numeric, the number of input genes that are knocked-down therefore have a bi-

modal distribution
numtfs a numeric, the number of genes in the network that regulate any other gene (are TFs)
numcotargets a numeric, the number of genes that are co-regulated, i.e. regulated by more than

one TF
data an S4 Matrix, the expression data with samples along the columns and genes along the rows.

Condition classification (KD vs WT) are stored as attributes of this object
triplets a data frame, consisting of gene triplets representing TF- Target associations conditioned

on the gene knocked-down. Triplets are annotated for being in either the direct, influence and
association networks

sensmat an S4 Matrix, sensitivities of genes to TFs based on perturbation analysis of the simulation
model

Source

LINK TO PAPERRRR

Index

∗ classif
dcanr-package, 2

∗ datasets
sim102, 19

∗ graphs
dcanr-package, 2

∗ internal
dcanr-package, 2

cor.pairs, 3, 4

dcAdjust, 3, 4, 7, 9
dcanr (dcanr-package), 2
dcanr-package, 2
dcEvaluate, 3, 5
dcMethods, 3, 6, 9, 11, 13
dcNetwork, 3, 7, 9
dcPipeline, 3, 6, 8
dcScore, 3, 7, 9, 10, 13, 15
dcScore,data.frame-method (dcScore), 10
dcScore,DGEList-method (dcScore), 10
dcScore,ExpressionSet-method (dcScore),

10
dcScore,Matrix-method (dcScore), 10
dcScore,matrix-method (dcScore), 10
dcScore,SummarizedExperiment-method

(dcScore), 10
dcTest, 3, 5, 7, 9, 12
dcZscore, 13

getConditionNames, 3
getConditionNames (getSimData), 14
getSimData, 3, 14
getTrueNetwork, 3
getTrueNetwork (getSimData), 14

mi.ap, 3, 16

p.adjust, 5
perfMethods, 3, 6, 16, 17
performanceMeasure, 3, 6, 17

plot.igraph, 9, 18
plotSimNetwork, 3, 18

sim102, 19

20

	dcanr-package
	cor.pairs
	dcAdjust
	dcEvaluate
	dcMethods
	dcNetwork
	dcPipeline
	dcScore
	dcTest
	dcZscore
	getSimData
	mi.ap
	perfMethods
	performanceMeasure
	plotSimNetwork
	sim102
	Index

