Contents

0.1 Introduction

mist (Methylation Inference for Single-cell along Trajectory) is an R package for differential methylation (DM) analysis of single-cell DNA methylation (scDNAm) data. The package employs a Bayesian approach to model methylation changes along pseudotime and estimates developmental-stage-specific biological variations. It supports both single-group and two-group analyses, enabling users to identify genomic features exhibiting temporal changes in methylation levels or different methylation patterns between groups.

This vignette demonstrates how to use mist for: 1. Single-group analysis. 2. Two-group analysis.

0.2 Installation

To install the latest version of mist, run the following commands:

if (!requireNamespace("BiocManager", quietly = TRUE)) {
    install.packages("BiocManager")
}

# Install mist from GitHub
BiocManager::install("https://github.com/dxd429/mist")

From Bioconductor:

if (!requireNamespace("BiocManager", quietly = TRUE)) {
    install.packages("BiocManager")
}
BiocManager::install("mist")

To view the package vignette in HTML format, run the following lines in R:

library(mist)
vignette("mist")

0.3 Example Workflow for Single-Group Analysis

In this section, we will estimate parameters and perform differential methylation analysis using single-group data.

1 Step 1: Load Example Data

Here we load the example data from GSE121708.

library(mist)
library(SingleCellExperiment)
# Load sample scDNAm data
Dat_sce <- readRDS(system.file("extdata", "group1_sampleData_sce.rds", package = "mist"))

2 Step 2: Estimate Parameters Using estiParam

# Estimate parameters for single-group
Dat_sce <- estiParam(
    Dat_sce = Dat_sce,
    Dat_name = "Methy_level_group1",
    ptime_name = "pseudotime"
)

# Check the output
head(rowData(Dat_sce)$mist_pars)
##                      Beta_0       Beta_1      Beta_2      Beta_3       Beta_4
## ENSMUSG00000000001 1.256291 -0.183144888  0.16118404  0.17372086  0.032610229
## ENSMUSG00000000003 1.638759  1.580968452  2.28046605 -1.05180953 -3.152108513
## ENSMUSG00000000028 1.306044 -0.001501576  0.07854243  0.04604154 -0.003640655
## ENSMUSG00000000037 1.030432 -4.723060796 13.04511460 -6.05424526 -2.298265778
## ENSMUSG00000000049 1.015564 -0.083708111  0.07740307  0.09828288  0.067350894
##                     Sigma2_1  Sigma2_2 Sigma2_3 Sigma2_4
## ENSMUSG00000000001  5.297265 14.693974 4.227455 1.799247
## ENSMUSG00000000003 27.442356  4.763507 5.331732 9.332439
## ENSMUSG00000000028  8.103126  7.721634 4.392531 2.220394
## ENSMUSG00000000037  8.401977 15.437408 6.715358 2.015734
## ENSMUSG00000000049  5.903571  9.046700 2.801826 1.190057

3 Step 3: Perform Differential Methylation Analysis Using dmSingle

# Perform differential methylation analysis for the single-group
Dat_sce <- dmSingle(Dat_sce)

# View the top genomic features with drastic methylation changes
head(rowData(Dat_sce)$mist_int)
## ENSMUSG00000000037 ENSMUSG00000000003 ENSMUSG00000000001 ENSMUSG00000000049 
##        0.062267003        0.030801958        0.007947986        0.007292713 
## ENSMUSG00000000028 
##        0.004876852

4 Step 4: Perform Differential Methylation Analysis Using plotGene

# Produce scatterplot with fitted curve of a specific gene
library(ggplot2)
plotGene(Dat_sce = Dat_sce,
         Dat_name = "Methy_level_group1",
         ptime_name = "pseudotime", 
         gene_name = "ENSMUSG00000000037")

4.1 Example Workflow for Two-Group Analysis

In this section, we will estimate parameters and perform DM analysis using data from two phenotypic groups.

5 Step 1: Load Two-Group Data

# Load two-group scDNAm data
Dat_sce_g1 <- readRDS(system.file("extdata", "group1_sampleData_sce.rds", package = "mist"))
Dat_sce_g2 <- readRDS(system.file("extdata", "group2_sampleData_sce.rds", package = "mist"))

6 Step 2: Estimate Parameters Using estiParam

# Estimate parameters for both groups
Dat_sce_g1 <- estiParam(
     Dat_sce = Dat_sce_g1,
     Dat_name = "Methy_level_group1",
     ptime_name = "pseudotime"
 )

Dat_sce_g2 <- estiParam(
     Dat_sce = Dat_sce_g2,
     Dat_name = "Methy_level_group2",
     ptime_name = "pseudotime"
 ) 

# Check the output
head(rowData(Dat_sce_g1)$mist_pars, n = 3)
##                      Beta_0      Beta_1     Beta_2      Beta_3      Beta_4
## ENSMUSG00000000001 1.244928 -0.26955503 0.18179529  0.23925223  0.06083494
## ENSMUSG00000000003 1.584585  1.60939994 2.11996025 -1.03197439 -2.92231773
## ENSMUSG00000000028 1.286054 -0.03889101 0.07566304  0.07675484  0.04244256
##                     Sigma2_1 Sigma2_2 Sigma2_3 Sigma2_4
## ENSMUSG00000000001  5.523044 15.62549 3.400899 1.845494
## ENSMUSG00000000003 26.738368  4.58674 7.342442 9.357090
## ENSMUSG00000000028  8.209515 10.20799 2.673191 2.476688
head(rowData(Dat_sce_g2)$mist_pars, n = 3)
##                        Beta_0     Beta_1   Beta_2    Beta_3     Beta_4
## ENSMUSG00000000001  1.9156736 -0.3967686 4.305595 -2.887437 -1.2242695
## ENSMUSG00000000003 -0.8417959 -0.7669051 2.710397 -1.665566 -0.1884728
## ENSMUSG00000000028  2.3440533 -1.7794914 7.398346 -6.863764  1.3230673
##                     Sigma2_1  Sigma2_2 Sigma2_3 Sigma2_4
## ENSMUSG00000000001  6.110010  7.042253 3.467676 1.230212
## ENSMUSG00000000003  7.186159 11.136267 4.741528 3.328694
## ENSMUSG00000000028 11.550246  5.726220 3.986965 3.708369

7 Step 3: Perform Differential Methylation Analysis for Two-Group Comparison Using dmTwoGroups

# Perform DM analysis to compare the two groups
dm_results <- dmTwoGroups(
     Dat_sce_g1 = Dat_sce_g1,
     Dat_sce_g2 = Dat_sce_g2
 )

# View the top genomic features with different temporal patterns between groups
head(dm_results)
## ENSMUSG00000000037 ENSMUSG00000000003 ENSMUSG00000000001 ENSMUSG00000000049 
##        0.064157578        0.025305545        0.020943984        0.011973279 
## ENSMUSG00000000028 
##        0.008871748

7.1 Conclusion

mist provides a comprehensive suite of tools for analyzing scDNAm data along pseudotime, whether you are working with a single group or comparing two phenotypic groups. With the combination of Bayesian modeling and differential methylation analysis, mist is a powerful tool for identifying significant genomic features in scDNAm data.

Session info

## R version 4.5.2 (2025-10-31)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.3 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.22-bioc/R/lib/libRblas.so 
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0  LAPACK version 3.12.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_GB              LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## time zone: America/New_York
## tzcode source: system (glibc)
## 
## attached base packages:
## [1] stats4    stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] ggplot2_4.0.2               SingleCellExperiment_1.32.0
##  [3] SummarizedExperiment_1.40.0 Biobase_2.70.0             
##  [5] GenomicRanges_1.62.1        Seqinfo_1.0.0              
##  [7] IRanges_2.44.0              S4Vectors_0.48.0           
##  [9] BiocGenerics_0.56.0         generics_0.1.4             
## [11] MatrixGenerics_1.22.0       matrixStats_1.5.0          
## [13] mist_1.2.3                  BiocStyle_2.38.0           
## 
## loaded via a namespace (and not attached):
##  [1] tidyselect_1.2.1         dplyr_1.2.0              farver_2.1.2            
##  [4] Biostrings_2.78.0        S7_0.2.1                 bitops_1.0-9            
##  [7] fastmap_1.2.0            RCurl_1.98-1.17          GenomicAlignments_1.46.0
## [10] XML_3.99-0.20            digest_0.6.39            lifecycle_1.0.5         
## [13] survival_3.8-6           magrittr_2.0.4           compiler_4.5.2          
## [16] rlang_1.1.7              sass_0.4.10              tools_4.5.2             
## [19] yaml_2.3.12              rtracklayer_1.70.1       knitr_1.51              
## [22] labeling_0.4.3           S4Arrays_1.10.1          curl_7.0.0              
## [25] DelayedArray_0.36.0      RColorBrewer_1.1-3       abind_1.4-8             
## [28] BiocParallel_1.44.0      withr_3.0.2              grid_4.5.2              
## [31] scales_1.4.0             MASS_7.3-65              mcmc_0.9-8              
## [34] tinytex_0.58             dichromat_2.0-0.1        cli_3.6.5               
## [37] mvtnorm_1.3-3            rmarkdown_2.30           crayon_1.5.3            
## [40] otel_0.2.0               httr_1.4.7               rjson_0.2.23            
## [43] cachem_1.1.0             splines_4.5.2            parallel_4.5.2          
## [46] BiocManager_1.30.27      XVector_0.50.0           restfulr_0.0.16         
## [49] vctrs_0.7.1              Matrix_1.7-4             jsonlite_2.0.0          
## [52] SparseM_1.84-2           carData_3.0-6            bookdown_0.46           
## [55] car_3.1-5                MCMCpack_1.7-1           Formula_1.2-5           
## [58] magick_2.9.0             jquerylib_0.1.4          glue_1.8.0              
## [61] codetools_0.2-20         gtable_0.3.6             BiocIO_1.20.0           
## [64] tibble_3.3.1             pillar_1.11.1            htmltools_0.5.9         
## [67] quantreg_6.1             R6_2.6.1                 evaluate_1.0.5          
## [70] lattice_0.22-9           Rsamtools_2.26.0         cigarillo_1.0.0         
## [73] bslib_0.10.0             MatrixModels_0.5-4       Rcpp_1.1.1              
## [76] coda_0.19-4.1            SparseArray_1.10.8       xfun_0.56               
## [79] pkgconfig_2.0.3