## ----example1,eval=TRUE, results="hide", message=FALSE, warning=FALSE--------- require(dmGsea) #generating example data annopkg <- "IlluminaHumanMethylation450kanno.ilmn12.hg19" anno <- minfi::getAnnotation(eval(annopkg)) #Use a subset of the data in the example to speed up execution anno <- anno[1:10000,] probe.p <- data.frame(Name=rownames(anno),p=runif(nrow(anno))) probe.p$p[1:500] <- probe.p$p[1:500]/100000 Data4cor <- matrix(runif(nrow(probe.p)*100),ncol=100) rownames(Data4cor) <- rownames(anno) #geneset enrichment analysis with threshold based method #for top ranked 1000 genes gsGene(probe.p <- probe.p,Data4Cor=Data4cor,arrayType="450K",nTopGene=1000, outGenep=TRUE, method="Threshold",gSetName="KEGG",species="Human", outfile="gs1",ncore=1) file.remove("gs1_KEGG_KEGG.csv") ## ----example2, eval=TRUE, results="hide", message=FALSE, warning=FALSE-------- #generate example dataset kegg <- getKEGG(species="Human") gene1 <- unique(as.vector(unlist(kegg[1:5]))) gene2 <- unique(as.vector(unlist(kegg[6:length(kegg)]))) gene1 <- rep(gene1,sample(1:10,length(gene1),replace=TRUE)) gene2 <- rep(gene2,sample(1:10,length(gene2),replace=TRUE)) p11 <- runif(length(gene1))*(1e-3) p2 <- runif(length(gene2)) geneid <- c(gene1,gene2) p <- c(p11,p2) Name <- paste0("cg",1:length(p)) probe.p <- data.frame(Name=Name,p=p) GeneProbeTable <- data.frame(Name=Name,entrezid=geneid) dat <- matrix(runif(length(p)*100),ncol=100) rownames(dat) <- Name #enrichment analysis gsGene(probe.p=probe.p,Data4Cor=dat,GeneProbeTable=GeneProbeTable, method="Threshold",gSetName="KEGG",species="Human",outfile="gs5", ncore=1) file.remove("gs5_KEGG_KEGG.csv") ## ----example3, eval=TRUE, results="hide", message=FALSE, warning=FALSE-------- #generatin example dataset userGeneset <- getKEGG(species="Human") #enrichment analysis gsGene(probe.p=probe.p,Data4Cor=dat,GeneProbeTable=GeneProbeTable, method="Threshold",geneSet=userGeneset,species="Human",outfile="gs7", ncore=1) file.remove("gs7_userSet_userSet.csv") ## ----example4, eval=TRUE, results="hide", message=FALSE, warning=FALSE-------- #generatin example dataset kegg <- getKEGG(species="Human") gene <- unique(as.vector(unlist(kegg))) p <- runif(length(gene)) names(p) <- gene stats <- -log(p)*sample(c(1,-1),length(p),replace=TRUE) #traditional GSEA analysis, enrichment toward higher or lower end of statstics stats <- sort(stats,decr=TRUE) gsRank(stats=stats,gSetName="KEGG",scoreType="std",outfile="gs9",nperm=1e4, ncore=1) file.remove("gs9_KEGG_KEGG.csv") file.remove("gsGene_genep.csv") #enrichment of genes with higher statistics stats <- sort(abs(stats),decr=TRUE) ## ----session info------------------------------------------------------------- sessionInfo()