chevreulProcess 1.1.2
chevreulProcess
R
is an open-source statistical environment which can be easily modified
to enhance its functionality via packages. chevreulProcess
is a R
package available via the Bioconductor
repository
for packages. R
can be installed on any operating system from
CRAN after which you can install
chevreulProcess by using the following commands in your R
session:
if (!requireNamespace("BiocManager", quietly = TRUE)) {
install.packages("BiocManager")
}
BiocManager::install("chevreulProcess")
The chevreulProcess package is designed for single-cell RNA
sequencing data. The functions included within this package are derived from
other packages that have implemented the infrastructure needed for RNA-seq data
processing and analysis. Packages that have been instrumental in the
development of chevreulProcess include,
Biocpkg("SummarizedExperiment")
and Biocpkg("scater")
.
R
and Bioconductor
have a steep learning curve so it is critical to
learn where to ask for help. The
Bioconductor support site is the main
resource for getting help: remember to use the chevreulProcess
tag and check
the older posts.
chevreulProcess
The chevreulProcess
package contains functions to preprocess, cluster,
visualize, and perform other analyses on scRNA-seq data. It also contains a
shiny app for easy
visualization and analysis of scRNA data.
chvereul
uses SingelCellExperiment (SCE) object type
(from SingleCellExperiment)
to store expression and other metadata from single-cell experiments.
This package features functions capable of:
library("chevreulProcess")
# Load the data
data("small_example_dataset")
R
session information.
#> R version 4.5.0 (2025-04-11)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.2 LTS
#>
#> Matrix products: default
#> BLAS: /home/biocbuild/bbs-3.22-bioc/R/lib/libRblas.so
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 LAPACK version 3.12.0
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_GB LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> time zone: America/New_York
#> tzcode source: system (glibc)
#>
#> attached base packages:
#> [1] stats4 stats graphics grDevices utils datasets methods
#> [8] base
#>
#> other attached packages:
#> [1] chevreulProcess_1.1.2 scater_1.37.0
#> [3] ggplot2_3.5.2 scuttle_1.19.0
#> [5] SingleCellExperiment_1.31.0 SummarizedExperiment_1.39.0
#> [7] Biobase_2.69.0 GenomicRanges_1.61.0
#> [9] GenomeInfoDb_1.45.4 IRanges_2.43.0
#> [11] S4Vectors_0.47.0 BiocGenerics_0.55.0
#> [13] generics_0.1.4 MatrixGenerics_1.21.0
#> [15] matrixStats_1.5.0 BiocStyle_2.37.0
#>
#> loaded via a namespace (and not attached):
#> [1] RColorBrewer_1.1-3 jsonlite_2.0.0
#> [3] shape_1.4.6.1 magrittr_2.0.3
#> [5] ggbeeswarm_0.7.2 GenomicFeatures_1.61.3
#> [7] farver_2.1.2 rmarkdown_2.29
#> [9] GlobalOptions_0.1.2 fs_1.6.6
#> [11] BiocIO_1.19.0 vctrs_0.6.5
#> [13] memoise_2.0.1 Rsamtools_2.25.0
#> [15] DelayedMatrixStats_1.31.0 RCurl_1.98-1.17
#> [17] htmltools_0.5.8.1 S4Arrays_1.9.1
#> [19] curl_6.2.3 BiocNeighbors_2.3.1
#> [21] SparseArray_1.9.0 sass_0.4.10
#> [23] bslib_0.9.0 cachem_1.1.0
#> [25] ResidualMatrix_1.19.0 GenomicAlignments_1.45.0
#> [27] igraph_2.1.4 lifecycle_1.0.4
#> [29] pkgconfig_2.0.3 rsvd_1.0.5
#> [31] Matrix_1.7-3 R6_2.6.1
#> [33] fastmap_1.2.0 digest_0.6.37
#> [35] colorspace_2.1-1 AnnotationDbi_1.71.0
#> [37] dqrng_0.4.1 irlba_2.3.5.1
#> [39] RSQLite_2.4.0 beachmat_2.25.1
#> [41] httr_1.4.7 abind_1.4-8
#> [43] compiler_4.5.0 bit64_4.6.0-1
#> [45] withr_3.0.2 BiocParallel_1.43.3
#> [47] viridis_0.6.5 DBI_1.2.3
#> [49] DelayedArray_0.35.1 rjson_0.2.23
#> [51] bluster_1.19.0 tools_4.5.0
#> [53] vipor_0.4.7 beeswarm_0.4.0
#> [55] glue_1.8.0 restfulr_0.0.15
#> [57] batchelor_1.25.0 grid_4.5.0
#> [59] cluster_2.1.8.1 megadepth_1.19.0
#> [61] gtable_0.3.6 tzdb_0.5.0
#> [63] ensembldb_2.33.0 hms_1.1.3
#> [65] metapod_1.17.0 BiocSingular_1.25.0
#> [67] ScaledMatrix_1.17.0 XVector_0.49.0
#> [69] stringr_1.5.1 ggrepel_0.9.6
#> [71] pillar_1.10.2 limma_3.65.1
#> [73] circlize_0.4.16 dplyr_1.1.4
#> [75] lattice_0.22-7 rtracklayer_1.69.0
#> [77] bit_4.6.0 tidyselect_1.2.1
#> [79] locfit_1.5-9.12 Biostrings_2.77.1
#> [81] knitr_1.50 gridExtra_2.3
#> [83] bookdown_0.43 ProtGenerics_1.41.0
#> [85] edgeR_4.7.2 cmdfun_1.0.2
#> [87] xfun_0.52 statmod_1.5.0
#> [89] stringi_1.8.7 UCSC.utils_1.5.0
#> [91] EnsDb.Hsapiens.v86_2.99.0 lazyeval_0.2.2
#> [93] yaml_2.3.10 evaluate_1.0.3
#> [95] codetools_0.2-20 tibble_3.2.1
#> [97] BiocManager_1.30.25 cli_3.6.5
#> [99] jquerylib_0.1.4 dichromat_2.0-0.1
#> [101] Rcpp_1.0.14 png_0.1-8
#> [103] XML_3.99-0.18 parallel_4.5.0
#> [105] readr_2.1.5 blob_1.2.4
#> [107] AnnotationFilter_1.33.0 scran_1.37.0
#> [109] sparseMatrixStats_1.21.0 bitops_1.0-9
#> [111] viridisLite_0.4.2 scales_1.4.0
#> [113] purrr_1.0.4 crayon_1.5.3
#> [115] rlang_1.1.6 KEGGREST_1.49.0