## ----setup, include = FALSE------------------------------------------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", crop = NULL ## Related to https://stat.ethz.ch/pipermail/bioc-devel/2020-April/016656.html ) ## ----vignetteSetup, echo=FALSE, message=FALSE, warning = FALSE-------------------------------------------------------- ## Track time spent on making the vignette startTime <- Sys.time() ## Bib setup library("RefManageR") ## Write bibliography information bib <- c( R = citation(), BiocStyle = citation("BiocStyle")[1], knitr = citation("knitr")[1], RefManageR = citation("RefManageR")[1], rmarkdown = citation("rmarkdown")[1], sessioninfo = citation("sessioninfo")[1], testthat = citation("testthat")[1], spatialLIBD = citation("spatialLIBD")[1], spatialLIBDpaper = citation("spatialLIBD")[2], tran2021 = RefManageR::BibEntry( bibtype = "Article", key = "tran2021", author = "Tran, Matthew N. and Maynard, Kristen R. and Spangler, Abby and Huuki, Louise A. and Montgomery, Kelsey D. and Sadashivaiah, Vijay and Tippani, Madhavi and Barry, Brianna K. and Hancock, Dana B. and Hicks, Stephanie C. and Kleinman, Joel E. and Hyde, Thomas M. and Collado-Torres, Leonardo and Jaffe, Andrew E. and Martinowich, Keri", title = "Single-nucleus transcriptome analysis reveals cell-type-specific molecular signatures across reward circuitry in the human brain", year = 2021, doi = "10.1016/j.neuron.2021.09.001", journal = "Neuron" ) ) ## ----"citation"------------------------------------------------------------------------------------------------------- ## Citation info citation("spatialLIBD") ## ----"install", eval = FALSE------------------------------------------------------------------------------------------ # if (!requireNamespace("BiocManager", quietly = TRUE)) { # install.packages("BiocManager") # } # # BiocManager::install("spatialLIBD") # # ## Check that you have a valid Bioconductor installation # BiocManager::valid() ## ----"start", message=FALSE------------------------------------------------------------------------------------------- library("spatialLIBD") library("SingleCellExperiment") ## ----"fetch_refrence"------------------------------------------------------------------------------------------------- ## get reference layer enrichment statistics layer_modeling_results <- fetch_data(type = "modeling_results") layer_modeling_results$enrichment[1:5, 1:5] ## ----"download_sce_data"---------------------------------------------------------------------------------------------- # Download and save a local cache of the data available at: # https://github.com/LieberInstitute/10xPilot_snRNAseq-human#processed-data bfc <- BiocFileCache::BiocFileCache() url <- paste0( "https://libd-snrnaseq-pilot.s3.us-east-2.amazonaws.com/", "SCE_DLPFC-n3_tran-etal.rda" ) local_data <- BiocFileCache::bfcrpath(url, x = bfc) load(local_data, verbose = TRUE) ## ----"check_cell_types"----------------------------------------------------------------------------------------------- table(sce.dlpfc.tran$cellType) ## ----"donor_x_cellType"----------------------------------------------------------------------------------------------- table(sce.dlpfc.tran$donor, sce.dlpfc.tran$cellType) ## ----"run_registration_wrapper"--------------------------------------------------------------------------------------- ## Perform the spatial registration sce_modeling_results <- registration_wrapper( sce = sce.dlpfc.tran, var_registration = "cellType", var_sample_id = "donor", gene_ensembl = "gene_id", gene_name = "gene_name" ) ## ----"extract_t_stats"------------------------------------------------------------------------------------------------ ## check out table on enrichment t-statistics sce_modeling_results$enrichment[1:5, 1:5] ## ----"layer_stat_cor"------------------------------------------------------------------------------------------------- cor_layer <- layer_stat_cor( stats = sce_modeling_results$enrichment, modeling_results = layer_modeling_results, model_type = "enrichment", top_n = 100 ) cor_layer ## ----layer_cor_plot--------------------------------------------------------------------------------------------------- layer_stat_cor_plot(cor_layer) ## ----"annotate"------------------------------------------------------------------------------------------------------- anno <- annotate_registered_clusters( cor_stats_layer = cor_layer, confidence_threshold = 0.25, cutoff_merge_ratio = 0.25 ) anno ## ----"plot_anno"------------------------------------------------------------------------------------------------------ layer_stat_cor_plot( cor_layer, query_colors = get_colors(clusters = rownames(cor_layer)), reference_colors = libd_layer_colors, annotation = anno, cluster_rows = FALSE, cluster_columns = FALSE ) ## ----createVignette, eval=FALSE--------------------------------------------------------------------------------------- # ## Create the vignette # library("rmarkdown") # system.time(render("guide_to_spatial_registration.Rmd", "BiocStyle::html_document")) # # ## Extract the R code # library("knitr") # knit("guide_to_spatial_registration.Rmd", tangle = TRUE) ## ----reproduce1, echo=FALSE------------------------------------------------------------------------------------------- ## Date the vignette was generated Sys.time() ## ----reproduce2, echo=FALSE------------------------------------------------------------------------------------------- ## Processing time in seconds totalTime <- diff(c(startTime, Sys.time())) round(totalTime, digits = 3) ## ----reproduce3, echo=FALSE------------------------------------------------------------------------------------------- ## Session info library("sessioninfo") options(width = 120) session_info() ## ----vignetteBiblio, results = "asis", echo = FALSE, warning = FALSE, message = FALSE--------------------------------- ## Print bibliography PrintBibliography(bib, .opts = list(hyperlink = "to.doc", style = "html"))