## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", crop = NULL ## Related to https://stat.ethz.ch/pipermail/bioc-devel/2020-April/016656.html ) ## ----"start", message=FALSE, warning=FALSE------------------------------------ library("spatialLIBD") ## ----"normalized_data_download"----------------------------------------------- ## Grab SpatialExperiment with normalized counts spe <- fetch_data(type = "visiumStitched_brain_spe") ## Check that spe does contain the "logcounts" assay assayNames(spe) ## Define white matter marker genes wm_genes <- rownames(spe)[ match(c("MBP", "GFAP", "PLP1", "AQP4"), rowData(spe)$gene_name) ] ## ----"rotate", fig.height=4--------------------------------------------------- ## Rotate image and gene-expression data by 180 degrees, plotting a combination ## of white-matter genes vis_gene( rotateObject(spe, sample_id = "Br2719", degrees = 180), geneid = wm_genes, assayname = "counts", is_stitched = TRUE, spatial = FALSE ) ## ----"mirror", fig.height = 4------------------------------------------------- ## Mirror image and gene-expression data across a vertical axis, plotting a ## combination of white-matter genes vis_gene( mirrorObject(spe, sample_id = "Br2719", axis = "v"), geneid = wm_genes, assayname = "counts", is_stitched = TRUE, spatial = FALSE ) ## ----"fetch_norm", fig.height = 4--------------------------------------------- ## Plot combination of normalized counts for some white-matter genes vis_gene( spe, geneid = wm_genes, assayname = "logcounts", is_stitched = TRUE, spatial = FALSE ) ## ----"unnorm_plot", fig.height = 4-------------------------------------------- ## Plot raw counts, which are noisier ## Same plot we made before, but this time with no histology images vis_gene( spe, geneid = wm_genes, assayname = "counts", is_stitched = TRUE, spatial = FALSE ) ## ----"merge_overlapping", eval = FALSE---------------------------------------- # spe_merged <- merge_overlapping(spe)