## ----echo=FALSE, results="hide", message=FALSE-------------------------------- knitr::opts_chunk$set(error=FALSE, message=FALSE, warning=FALSE) library(BiocStyle) ## ----------------------------------------------------------------------------- library(celldex) hpca.se <- HumanPrimaryCellAtlasData() hpca.se ## ----------------------------------------------------------------------------- library(scRNAseq) hESCs <- LaMannoBrainData('human-es') hESCs <- hESCs[,1:100] ## ----------------------------------------------------------------------------- library(SingleR) pred.hesc <- SingleR(test = hESCs, ref = hpca.se, assay.type.test=1, labels = hpca.se$label.main) ## ----------------------------------------------------------------------------- pred.hesc # Summarizing the distribution: table(pred.hesc$labels) ## ----------------------------------------------------------------------------- library(scRNAseq) sceM <- MuraroPancreasData() # One should normally do cell-based quality control at this point, but for # brevity's sake, we will just remove the unlabelled libraries here. sceM <- sceM[,!is.na(sceM$label)] # SingleR() expects reference datasets to be normalized and log-transformed. library(scuttle) sceM <- logNormCounts(sceM) ## ----------------------------------------------------------------------------- sceG <- GrunPancreasData() sceG <- sceG[,colSums(counts(sceG)) > 0] # Remove libraries with no counts. # Log-transformation is not actually required for SingleR itself, # but we'll do it anyway as we need it for plotting heatmaps later. sceG <- logNormCounts(sceG) ## ----------------------------------------------------------------------------- pred.grun <- SingleR(test=sceG, ref=sceM, labels=sceM$label, de.method="wilcox") table(pred.grun$labels) ## ----------------------------------------------------------------------------- plotScoreHeatmap(pred.grun) ## ----------------------------------------------------------------------------- plotDeltaDistribution(pred.grun, ncol = 3) ## ----------------------------------------------------------------------------- summary(is.na(pred.grun$pruned.labels)) ## ----------------------------------------------------------------------------- plotMarkerHeatmap(pred.grun, sceG, label="beta") ## ----------------------------------------------------------------------------- sessionInfo()