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1 Introduction to supersized clustering
You may have found yourself in a familiar predicament for many bioinformaticians: you have a lot of sequences and
you need to downsize before you can get going. You may also theorize that this must be an easy problem to solve
—given sequences, output clusters. But what can you utilize to solve this problem? This vignette will familiarize you
with the Clusterize function in the DECIPHER package. Clusterize will revolutionize all your clustering needs!
Why Clusterize?:

• Scalability - Clusterize will linearize the search space so that many sequences can be clustered in a reason-
able amount of time.

• Simplicity - Although you can individualize Clusterize, the defaults are straightforward and should meet
most of your needs.

• Accuracy - Clusterize will maximize your ability to extract biologically meaningful results from your se-
quences.

This vignette will summarize the use of Clusterize to cluster DNA, RNA, or protein sequences.
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2 Getting started with Clusterize
To get started we need to load the DECIPHER package, which automatically mobilize a few other required packages.

> library(DECIPHER)

There’s no need to memorize the inputs to Clusterize, because its help page can be accessed through:

> ? Clusterize

Note that, while it’s easy to fantasize about using Clusterize, if you only have a moderate number of homologous
sequences (« 100k) then it’s more accurate to use Treeline with a distance matrix created from a multiple sequence
alignment. This function provides hierarchical clustering (i.e., single-linkage, UPGMA, or complete-linkage) that is
impossible to criticize as inexact.

3 Optimize your inputs to Clusterize
Clusterize requires that you first digitize your sequences by loading them into memory. For the purpose of this
vignette, we will capitalize on the fact that DECIPHER already includes some built-in sets of sequences.

> # specify the path to your file of sequences:
> fas <- "<<path to training FASTA file>>"
> # OR use the example DNA sequences:
> fas <- system.file("extdata",

"50S_ribosomal_protein_L2.fas",
package="DECIPHER")

> # read the sequences into memory
> dna <- readDNAStringSet(fas)
> dna

DNAStringSet object of length 317:
width seq names

[1] 819 ATGGCTTTAAAAAATTTTAATC...ATTTATTGTAAAAAAAAGAAAA Rickettsia prowaz...
[2] 822 ATGGGAATACGTAAACTCAAGC...CATCATTGAGAGAAGGAAAAAG Porphyromonas gin...
[3] 822 ATGGGAATACGTAAACTCAAGC...CATCATTGAGAGAAGGAAAAAG Porphyromonas gin...
[4] 822 ATGGGAATACGTAAACTCAAGC...CATCATTGAGAGAAGGAAAAAG Porphyromonas gin...
[5] 819 ATGGCTATCGTTAAATGTAAGC...CATCGTACGTCGTCGTGGTAAA Pasteurella multo...
... ... ...

[313] 819 ATGGCAATTGTTAAATGTAAAC...TATCGTACGTCGCCGTACTAAA Pectobacterium at...
[314] 822 ATGCCTATTCAAAAATGCAAAC...TATTCGCGATCGTCGCGTCAAG Acinetobacter sp....
[315] 864 ATGGGCATTCGCGTTTACCGAC...GGGTCGCGGTGGTCGTCAGTCT Thermosynechococc...
[316] 831 ATGGCACTGAAGACATTCAATC...AAGCCGCCACAAGCGGAAGAAG Bradyrhizobium ja...
[317] 840 ATGGGCATTCGCAAATATCGAC...CAAGACGGCTTCCGGGCGAGGT Gloeobacter viola...

The Clusterize algorithm will generalize to nucleotide or protein sequences, so we must choose which we
are going to use. Here, we hypothesize that weaker similarities can be detected between proteins and, therefore, decide
to use the translated coding (amino acid) sequences. If you wish to cluster at high similarity, you could also strategize
that nucleotide sequences would be better because there would be more nucleotide than amino acid differences.

> aa <- translate(dna)
> aa
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AAStringSet object of length 317:
width seq names

[1] 273 MALKNFNPITPSLRELVQVDKT...STKGKKTRKNKRTSKFIVKKRK Rickettsia prowaz...
[2] 274 MGIRKLKPTTPGQRHKVIGAFD...KGLKTRAPKKHSSKYIIERRKK Porphyromonas gin...
[3] 274 MGIRKLKPTTPGQRHKVIGAFD...KGLKTRAPKKHSSKYIIERRKK Porphyromonas gin...
[4] 274 MGIRKLKPTTPGQRHKVIGAFD...KGLKTRAPKKHSSKYIIERRKK Porphyromonas gin...
[5] 273 MAIVKCKPTSAGRRHVVKIVNP...TKGKKTRHNKRTDKFIVRRRGK Pasteurella multo...
... ... ...

[313] 273 MAIVKCKPTSPGRRHVVKVVNP...TKGKKTRSNKRTDKFIVRRRTK Pectobacterium at...
[314] 274 MPIQKCKPTSPGRRFVEKVVHS...KGYKTRTNKRTTKMIIRDRRVK Acinetobacter sp....
[315] 288 MGIRVYRPYTPGVRQKTVSDFA...SDALIVRRRKKSSKRGRGGRQS Thermosynechococc...
[316] 277 MALKTFNPTTPGQRQLVMVDRS...KKTRSNKSTNKFILLSRHKRKK Bradyrhizobium ja...
[317] 280 MGIRKYRPMTPGTRQRSGADFA...RKRRKPSSKFIIRRRKTASGRG Gloeobacter viola...

> seqs <- aa # could also cluster the nucleotides
> length(seqs)

[1] 317

Now you can choose how to parameterize the function, with the main arguments being myXStringSet and cutoff .
In this case, we will initialize cutoff at seq(0.5, 0, -0.1) to cluster sequences from 50% to 100% similarity
by 10%’s. It is important to recognize that cutoff s can be provided in ascending or descending order and, when
descending, groups at each cutoff will be nested within the previous cutoff ’s groups.

We must also choose whether to customize the calculation of distance. The defaults will penalize gaps as single
events, such that each consecutive set of gaps (i.e., insertion or deletion) is considered equivalent to one mismatch.
If you want to standardize the definition of distance to be the same as most other clustering programs then set: pe-
nalizeGapLetterMatches to TRUE (i.e., every gap position is a mismatch), method to "shortest", minCoverage
to 0, and includeTerminalGaps to TRUE. It is possible to rationalize many different measures of distance – see the
DistanceMatrix function for more information about alternative distance parameterizations.
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Figure 1: The most important parameters (in bold) to customize your use of Clusterize.
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We can further personalize the inputs as desired. The main function argument to emphasize is processors, which
controls whether the function is parallelized on multiple computer threads (if DECIPHER) was built with OpenMP
enabled). Setting processors to a value greater than 1 will speed up clustering considerably, especially for large size
clustering problems. Once we are ready, it’s time to run Clusterize and wait for the output to materialize!

> clusters <- Clusterize(seqs, cutoff=seq(0.5, 0, -0.1), processors=1)

Partitioning sequences by 3-mer similarity:
================================================================================

Time difference of 0.04 secs

Sorting by relatedness within 35 groups:

iteration 34 of up to 34 (100.0% stability)

Time difference of 0.52 secs

Clustering sequences by 5-mer similarity:
================================================================================

Time difference of 0.13 secs

Clusters via relatedness sorting: 100% (0% exclusively)
Clusters via rare 3-mers: 100% (0% exclusively)
Estimated clustering effectiveness: 100%

> class(clusters)

[1] "data.frame"

> colnames(clusters)

[1] "cluster_0_5" "cluster_0_4" "cluster_0_3" "cluster_0_2" "cluster_0_1"
[6] "cluster_0"

> str(clusters)

'data.frame': 317 obs. of 6 variables:
$ cluster_0_5: int 3 1 1 1 3 3 3 2 2 2 ...
$ cluster_0_4: int 1 21 21 21 3 3 3 10 10 10 ...
$ cluster_0_3: int 42 1 1 1 35 35 36 23 23 23 ...
$ cluster_0_2: int 1 67 67 67 12 12 9 34 34 34 ...
$ cluster_0_1: int 86 1 1 1 69 69 73 41 41 41 ...
$ cluster_0 : int 2 102 102 102 25 25 20 59 59 59 ...

> apply(clusters, 2, max) # number of clusters per cutoff

cluster_0_5 cluster_0_4 cluster_0_3 cluster_0_2 cluster_0_1 cluster_0
3 21 42 67 86 102

> apply(clusters, 2, function(x) which.max(table(x))) # max sizes

cluster_0_5 cluster_0_4 cluster_0_3 cluster_0_2 cluster_0_1 cluster_0
3 5 30 22 54 45

Notice that Clusterize will characterize the clustering based on how many clustered pairs came from re-
latedness sorting versus rare k-mers, and Clusterize will predict the effectiveness of clustering. Depending on
the input sequences, the percentage of clusters originating from relatedness sorting will equalize with the number
originating from rare k-mers, but more commonly clusters will originate from one source or the other. The clustering
effectiveness formalizes the concept of “inexact” clustering by approximating the fraction of possible sequence pairs
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that were correctly clustered together. You can incentivize a higher clustering effectiveness by increasing maxPhase3
at the expense of (proportionally) longer run times.

We can now realize our objective of decreasing the number of sequences. Here, we will prioritize keeping only
the longest diverse sequences.

> o <- order(clusters[[2]], width(seqs), decreasing=TRUE) # 40% cutoff
> o <- o[!duplicated(clusters[[2]])]
> aa[o]

AAStringSet object of length 21:
width seq names

[1] 274 MGIRKLKPTTPGQRHKVIGAFDK...KGLKTRAPKKHSSKYIIERRKK Porphyromonas gin...
[2] 274 MGIRKLKPTTPGQRHKVIGAFDK...KGLKTRAPKKHSSKYIIERRKK Porphyromonas gin...
[3] 274 MAVRKLKPTTPGQRHKIIGTFEE...KGLKTRAPKKQSSKYIIERRKK Bacteroides theta...
[4] 277 MGIKTYKPKTSSLRYKTTLSFDD...KGYKTRKKKRYSDKFIIKRRNK Borrelia burgdorf...
[5] 280 MAIRKYKPTTPGRRQSSVSMFEE...NPNRYSNNMIVQRRRTNKSKKR Corynebacterium d...
... ... ...
[17] 273 MAIVKCKPTSAGRRHVVKIVNPE...TKGKKTRHNKRTDKYIVRRRGK Haemophilus influ...
[18] 273 MAIVKCKPTSAGRRHVVKIVNPE...TKGKKTRHNKRTDKYIVRRRGK Haemophilus influ...
[19] 273 MAIVKCKPTSAGRRFVVKVVNQE...QTKGKKTRSNKRTDNMIVRRRK Pseudomonas aerug...
[20] 277 MALKHFNPITPGQRQLVIVDRSE...KKTRSNKATDKFIMRSRHQRKK Brucella suis VBI22
[21] 274 MAIVKCKPTSAGRRHVVKVVNAD...TKGYKTRSNKRTDKYIVRRRNK Vibrio cholerae PS15

> dna[o]

DNAStringSet object of length 21:
width seq names

[1] 822 ATGGGAATACGTAAACTCAAGCC...CATCATTGAGAGAAGGAAAAAG Porphyromonas gin...
[2] 822 ATGGGAATACGTAAACTCAAGCC...CATCATTGAGAGAAGGAAAAAG Porphyromonas gin...
[3] 822 ATGGCAGTACGTAAATTAAAGCC...CATTATTGAGAGAAGAAAAAAG Bacteroides theta...
[4] 831 ATGGGTATTAAGACTTATAAGCC...TATTATTAAAAGAAGAAATAAA Borrelia burgdorf...
[5] 840 ATGGCTATTCGTAAGTACAAGCC...CACGAACAAGAGCAAGAAGCGC Corynebacterium d...
... ... ...
[17] 819 ATGGCTATCGTTAAATGTAAGCC...TATCGTACGTCGTCGTGGCAAA Haemophilus influ...
[18] 819 ATGGCTATCGTTAAATGTAAGCC...TATCGTACGTCGTCGTGGCAAA Haemophilus influ...
[19] 819 ATGGCAATCGTTAAGTGCAAACC...CATGATCGTCCGCCGCCGCAAG Pseudomonas aerug...
[20] 831 ATGGCACTCAAGCATTTTAATCC...TTCGCGCCATCAGCGCAAGAAG Brucella suis VBI22
[21] 822 ATGGCTATTGTTAAATGTAAGCC...CATCGTACGTCGTCGTAATAAG Vibrio cholerae PS15

4 Visualize the output of Clusterize
We can scrutinize the clusters by selecting them and looking at their multiple sequence alignment:

> t <- table(clusters[[1]]) # select the clusters at a cutoff
> t <- sort(t, decreasing=TRUE)
> head(t)

3 1 2
218 58 41

> w <- which(clusters[[1]] == names(t[1]))
> AlignSeqs(seqs[w], verbose=FALSE)

AAStringSet object of length 218:
width seq names
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[1] 288 -MALKNFNPITPSLRELVQVDK...TR-KNKRTSKFIVKKRK----- Rickettsia prowaz...
[2] 288 -MAIVKCKPTSAGRRHVVKIVN...TR-HNKRTDKFIVRRRGK---- Pasteurella multo...
[3] 288 -MAIVKCKPTSAGRRHVVKIVN...TR-HNKRTDKFIVRRRGK---- Pasteurella multo...
[4] 288 -MPLMKFKPTSPGRRSAVRVVT...TR-KNKRTQQFIVRDRRG---- Xanthomonas campe...
[5] 288 -MPLMKFKPTSPGRRSAVRVVT...TR-KNKRTQQFIVRDRRG---- Xanthomonas citri...
... ... ...

[214] 288 -MAFKHFNPTTPGQRQLVIVDR...TR-SNKATDKFIMHTRHQRKK- Bartonella quinta...
[215] 288 -MAFKHFNPTTPGQRQLVIVDR...TR-SNKATDKFIMHTRHQRKK- Bartonella quinta...
[216] 288 -MAIVKCKPTSPGRRHVVKVVN...TR-SNKRTDKFIVRRRTK---- Pectobacterium at...
[217] 288 -MPIQKCKPTSPGRRFVEKVVH...TR-TNKRTTKMIIRDRRVK--- Acinetobacter sp....
[218] 288 -MALKTFNPTTPGQRQLVMVDR...TR-SNKSTNKFILLSRHKRKK- Bradyrhizobium ja...

It’s possible to utilize the heatmap function to view the clustering results.
As can be seen in Figure 2, Clusterize will organize its clusters such that each new cluster is within the

previous cluster when cutoff is provided in descending order. We can also see that sequences from the same species
tend to cluster together, which is an alternative way to systematize sequences without clustering.
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> aligned_seqs <- AlignSeqs(seqs, verbose=FALSE)
> d <- DistanceMatrix(aligned_seqs, verbose=FALSE)
> tree <- Treeline(myDistMatrix=d, method="UPGMA", verbose=FALSE)
> heatmap(as.matrix(clusters), scale="column", Colv=NA, Rowv=tree)
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Bdellovibrio bacteriovorus HD100
Campylobacter jejuni subsp. jejuni LMG 23263
Campylobacter jejuni subsp. jejuni 1893
Wolinella succinogenes
Helicobacter pylori NQ4110
Helicobacter pylori Hp P−16
Helicobacter pylori F57
Helicobacter pylori 2017
Helicobacter pylori 98−10
Helicobacter pylori NQ4200
Helicobacter pylori Hp H−10
Helicobacter pylori CPY1962
Helicobacter pylori CPY1313
Helicobacter pylori Hp H−11
Helicobacter pylori Hp P−62
Helicobacter pylori UM032
Ureaplasma parvum serovar 14 str. ATCC 33697
Mycoplasma pneumoniae M129−B7
Clostridium tetani E88
Staphylococcus epidermidis IS−K
Bacillus cereus Rock3−29
Bacillus thuringiensis Bt407
Lactococcus lactis subsp. lactis bv. diacetylactis str. LD61
Lactobacillus johnsonii NCC 533
Lactobacillus plantarum ZJ316
Chlamydia muridarum Nigg
Thermosynechococcus elongatus BP−1
Borrelia burgdorferi WI91−23
Treponema denticola F0402
Thermus thermophilus HB27
Bifidobacterium longum subsp. longum JCM 1217
Mycobacterium leprae
Corynebacterium diphtheriae CDCE 8392
Rhodopirellula baltica SH 1
Wigglesworthia glossinidia endosymbiont of Glossina brevipalpis
Buchnera aphidicola str. Sg (Schizaphis graminum)
Neisseria meningitidis 8013
Coxiella burnetii RSA 331
Xanthomonas axonopodis pv. citrumelo F1
Xanthomonas axonopodis pv. punicae str. LMG 859
Pseudomonas aeruginosa X24509
Pseudomonas aeruginosa BWHPSA001
Pseudomonas syringae pv. actinidiae str. M302091
Vibrio cholerae O395
Vibrio parahaemolyticus BB22OP
Haemophilus influenzae PittGG
Haemophilus influenzae R3021
Haemophilus influenzae F3031
Rhodopseudomonas palustris TIE−1
Sinorhizobium meliloti SM11
Agrobacterium sp. ATCC 31749
Brucella sp. NF 2653
Rickettsia parkeri str. Portsmouth

Figure 2: Visualization of the clustering.
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5 Specialize clustering for your goals
The most common use of clustering is to categorize sequences into groups sharing similarity above a threshold and
pick one representative sequence per group. These settings empitomize this typical user scenario:

> c1 <- Clusterize(dna, cutoff=0.2, invertCenters=TRUE, processors=1)

Partitioning sequences by 5-mer similarity:
================================================================================

Time difference of 0.12 secs

Sorting by relatedness within 34 groups:

iteration 25 of up to 56 (100.0% stability)

Time difference of 2.28 secs

Clustering sequences by 10-mer similarity:
================================================================================

Time difference of 0.42 secs

Clusters via relatedness sorting: 100% (0% exclusively)
Clusters via rare 5-mers: 100% (0% exclusively)
Estimated clustering effectiveness: 100%

> w <- which(c1 < 0 & !duplicated(c1))
> dna[w] # select cluster representatives (negative cluster numbers)

DNAStringSet object of length 78:
width seq names

[1] 819 ATGGCTTTAAAAAATTTTAATCC...ATTTATTGTAAAAAAAAGAAAA Rickettsia prowaz...
[2] 822 ATGGGAATACGTAAACTCAAGCC...CATCATTGAGAGAAGGAAAAAG Porphyromonas gin...
[3] 837 GTGGGTATTAAGAAGTATAAACC...TGGTCGCCGTCCAGGCAAACAC Lactobacillus pla...
[4] 825 ATGCCATTGATGAAGTTCAAACC...CATCGTCCGCGATCGTAGGGGC Xanthomonas axono...
[5] 828 ATGGGTATTCGTAATTATCGGCC...GATTGTCCGCCGTCGCACCAAA Synechocystis sp....
... ... ...
[74] 831 ATGGCATTTAAGCACTTTAATCC...TACGCGTCATCAGCGCAAGAAA Bartonella quinta...
[75] 843 ATGTTTAAGAAATATCGACCTGT...CGTGAAACGTCGAAGGAAGAAG Candidatus Protoc...
[76] 822 ATGCCTATTCAAAAATGCAAACC...TATTCGCGATCGTCGCGTCAAG Acinetobacter sp....
[77] 864 ATGGGCATTCGCGTTTACCGACC...GGGTCGCGGTGGTCGTCAGTCT Thermosynechococc...
[78] 840 ATGGGCATTCGCAAATATCGACC...CAAGACGGCTTCCGGGCGAGGT Gloeobacter viola...

By default, Clusterize will cluster sequences with linkage to the representative sequence in each group,
but it is also possible to tell Clusterize to minimize the number of clusters by establishing linkage to any sequence
in the cluster (i.e., single-linkage). This is often how we conceptualize natural groupings and, therefore, may better
match alternative classification systems such as taxonomy:

> c2 <- Clusterize(dna, cutoff=0.2, singleLinkage=TRUE, processors=1)

Partitioning sequences by 5-mer similarity:
================================================================================

Time difference of 0.11 secs
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Sorting by relatedness within 34 groups:

iteration 22 of up to 56 (100.0% stability)

Time difference of 1.91 secs

Clustering sequences by 10-mer similarity:
================================================================================

Time difference of 0.77 secs

Clusters via relatedness sorting: 100% (0% exclusively)
Clusters via rare 5-mers: 100% (0% exclusively)
Estimated clustering effectiveness: 100%

> max(abs(c1)) # center-linkage

[1] 78

> max(c2) # single-linkage (fewer clusters, but broader clusters)

[1] 76

It is possible to synthesize a plot showing a cross tabulation of taxonomy and cluster number. We may idealize
the clustering as matching taxonomic labels (3), but this is not exactly the case.
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> genus <- sapply(strsplit(names(dna), " "), `[`, 1)
> t <- table(genus, c2[[1]])
> heatmap(sqrt(t), scale="none", Rowv=NA, col=hcl.colors(100))

41 27 46 56 64 71 28 18 72 65 51 42 26 12 2 69 50 39 36 24 15 8 7 5 76 68 66 60 58 54 49 44 40 29 22 16 11 1

Acinetobacter
Anabaena
Bacillus
Bartonella
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Buchnera
Candidatus
Chlamydia
Chlorobium
Clostridium
Coxiella
Desulfovibrio
Fusobacterium
Gloeobacter
Helicobacter
Lactococcus
Mycobacterium
Neisseria
Nostoc
Onion
Pectobacterium
Porphyromonas
Pseudomonas
Rhodopirellula
Rickettsia
Sinorhizobium
Streptococcus
Synechococcus
Thermoanaerobacter
Thermotoga
Treponema
Vibrio
Wolbachia
Xanthomonas

Figure 3: Another visualization of the clustering.
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6 Resize to fit within less memory
What should you do if you have more sequences than you can cluster on your midsize computer? If there are far
fewer clusters than sequences (e.g., cutoff is high) then it is likely possible to resize the clustering problem. This is
accomplished by processing the sequences in batches that miniaturize the memory footprint and are at least as large
as the final number of clusters. The number of sequences processed per batch is critical to atomize the problem
appropriately while limiting redundant computations. Although not ideal from a speed perspective, the results will not
jeopardize accuracy relative to as if there was sufficient memory available to process all sequences in one batch.

> batchSize <- 2e2 # normally a large number (e.g., 1e6 or 1e7)
> o <- order(width(seqs), decreasing=TRUE) # process largest to smallest
> c3 <- integer(length(seqs)) # cluster numbers
> repeat {

m <- which(c3 < 0) # existing cluster representatives
m <- m[!duplicated(c3[m])] # remove redundant sequences
if (length(m) >= batchSize)

stop("batchSize is too small")
w <- head(c(m, o[c3[o] == 0L]), batchSize)
if (!any(c3[w] == 0L)) {

if (any(c3[-w] == 0L))
stop("batchSize is too small")

break # done
}
m <- m[match(abs(c3[-w]), abs(c3[m]))]
c3[w] <- Clusterize(seqs[w], cutoff=0.05, invertCenters=TRUE)[[1]]
c3[-w] <- ifelse(is.na(c3[m]), 0L, abs(c3[m]))

}

Partitioning sequences by 3-mer similarity:
================================================================================

Time difference of 0.02 secs

Sorting by relatedness within 4 groups:

iteration 1 of up to 29 (100.0% stability)

Time difference of 0.01 secs

Clustering sequences by 5-mer similarity:
================================================================================

Time difference of 0.14 secs

Clusters via relatedness sorting: 100% (0% exclusively)
Clusters via rare 3-mers: 100% (0% exclusively)
Estimated clustering effectiveness: 100%

Partitioning sequences by 3-mer similarity:
================================================================================

Time difference of 0.03 secs
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Sorting by relatedness within 97 groups:
Clustering sequences by 5-mer similarity:
================================================================================

Time difference of 0.22 secs

Clusters via relatedness sorting: 100% (0% exclusively)
Clusters via rare 3-mers: 100% (0% exclusively)
Estimated clustering effectiveness: 100%

> table(abs(c3)) # cluster sizes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
1 1 1 1 1 1 1 2 1 1 2 1 3 1 1 1 1 1 7 1 1 1 3 1 1 1
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
3 5 1 3 2 6 3 3 1 2 1 6 1 7 1 1 1 2 8 3 17 3 2 2 2 1
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
1 1 1 3 3 12 1 75 4 1 1 11 3 1 1 1 1 1 1 5 6 3 3 2 1 1
79 80 81 82 83 84 85 86 87 88 89 90 91
1 1 1 17 13 6 3 1 1 1 1 1 1

7 Clustering both nucleotide strands
Sometimes the input sequences are present in different orientations and it is necessary to harmonize the clusterings
from both strands. Without trying to hyperbolize how easy this is to do, here’s an example of clustering both strands:

> # simulate half of strands having opposite orientation
> s <- sample(c(TRUE, FALSE), length(dna), replace=TRUE)
> dna[s] <- reverseComplement(dna[s])
> # cluster both strands at the same time
> clus <- Clusterize(c(dna, reverseComplement(dna)), cutoff=0.2, processors=1)

Partitioning sequences by 5-mer similarity:
================================================================================

Time difference of 0.25 secs

Sorting by relatedness within 142 groups:

iteration 28 of up to 50 (100.0% stability)

Time difference of 4.47 secs

Clustering sequences by 10-mer similarity:
================================================================================

Time difference of 1.17 secs

Clusters via relatedness sorting: 100% (0% exclusively)
Clusters via rare 5-mers: 100% (0% exclusively)
Estimated clustering effectiveness: 100%
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> clus <- match(clus[[1]], clus[[1]]) # renumber clusters ascending
> # if needed, reorient all clustered sequences to have the same orientation
> strand <- clus[seq_len(length(clus)/2)] >= clus[-seq_len(length(clus)/2)]
> dna[strand] <- reverseComplement(dna[strand])
> # renumber clusters across both strands and compare to original clustering
> clus <- pmin(clus[seq_len(length(clus)/2)], clus[-seq_len(length(clus)/2)])
> org <- match(abs(c1[[1]]), abs(c1[[1]])) # renumber original clustering
> mean(clus == org) # some differences expected due to algorithm stochasticity

[1] 0.9842271

> # verify the largest cluster is now back in the same orientation
> dna[clus == which.max(tabulate(clus))]

DNAStringSet object of length 75:
width seq names

[1] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACACAAA Helicobacter pylo...
[2] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACATAAA Helicobacter pylo...
[3] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACATAAA Helicobacter pylo...
[4] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACATAAA Helicobacter pylo...
[5] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACATAAA Helicobacter pylo...
... ... ...
[71] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACATAAA Helicobacter pylo...
[72] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACATAAA Helicobacter pylo...
[73] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACATAAA Helicobacter pylo...
[74] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACATAAA Helicobacter pylo...
[75] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACACAAA Helicobacter pylo...

8 Finalize your use of Clusterize
Notably, Clusterize is a stochastic algorithm, meaning it will randomize which sequences are selected during
pre-sorting. Even though the clusters will typically stabilize with enough iterations, you can set the random number
seed (before every run) to guarantee reproducibility of the clusters:

> set.seed(123) # initialize the random number generator
> clusters <- Clusterize(seqs, cutoff=0.1, processors=1)

Partitioning sequences by 3-mer similarity:
================================================================================

Time difference of 0.03 secs

Sorting by relatedness within 35 groups:

iteration 1 of up to 34 (100.0% stability)

Time difference of 0.02 secs

Clustering sequences by 5-mer similarity:
================================================================================

Time difference of 0.21 secs

14



Clusters via relatedness sorting: 100% (0% exclusively)
Clusters via rare 3-mers: 100% (0% exclusively)
Estimated clustering effectiveness: 100%

> set.seed(NULL) # reset the seed

Now you know how to utilize Clusterize to cluster sequences. To publicize your results for others to
reproduce, make sure to provide your random number seed and version number:

• R Under development (unstable) (2024-10-21 r87258), x86_64-pc-linux-gnu

• Running under: Ubuntu 24.04.1 LTS

• Matrix products: default

• BLAS: /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so

• LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0

• Base packages: base, datasets, grDevices, graphics, methods, stats, stats4, utils

• Other packages: BiocGenerics 0.53.3, Biostrings 2.75.1, DECIPHER 3.3.1, GenomeInfoDb 1.43.2,
IRanges 2.41.1, S4Vectors 0.45.2, XVector 0.47.0, generics 0.1.3

• Loaded via a namespace (and not attached): DBI 1.2.3, GenomeInfoDbData 1.2.13, R6 2.5.1,
UCSC.utils 1.3.0, compiler 4.5.0, crayon 1.5.3, httr 1.4.7, jsonlite 1.8.9, tools 4.5.0, zlibbioc 1.53.0

15


	Introduction to supersized clustering
	Getting started with Clusterize
	Optimize your inputs to Clusterize
	Visualize the output of Clusterize
	Specialize clustering for your goals
	Resize to fit within less memory
	Clustering both nucleotide strands
	Finalize your use of Clusterize

