
isobar package for iTRAQ and TMT protein quantification

Florian P. Breitwieser, Jacques Colinge

October 29, 2024

Contents

1 Introduction 2
1.1 Installation . 2
1.2 Loading package . 2

2 Loading data 2
2.1 ibspiked test samples . 3
2.2 Protein information and grouping in ProteinGroup 4
2.3 Loading data from CID/HCD (or CID/MS3, etc) experiments 4
2.4 Loading data from CID/HCD experiments with full HCD spectrum 5
2.5 Integrating and thresholding precursor purity measures 5
2.6 MSnbase integration . 5

3 Data Analysis 5
3.1 Reporter mass precision . 5
3.2 MSnbase integration . 6

4 Data Analysis 6
4.1 Reporter mass precision . 6
4.2 Normalization and isotope impurity correction . 6
4.3 Fitting a noise model . 7
4.4 Protein and peptide ratio calculation . 8
4.5 Protein ratio distribution and selection . 10
4.6 Detection of proteins with no specific peptides . 12

5 Report generation 13
5.1 Files used for report generation . 14

A File formats 14
A.1 ID CSV file format . 14
A.2 IBSpectra CSV file format . 14

B properties.R for report generation 15

1

C Dependencies 20
C.1 LATEX and PGF/TikZ . 20
C.2 Perl . 20

D Session Information 21

1 Introduction
The isobar package is an extensible and interactive environment for the data analysis and exploration
of iTRAQ and TMT data. isobar implements the theory presented in Breitwieser et al., Journal of
Proteome Research 2011. Further extensions for the analysis of PTM data are presented in Breitwieser and
Colinge, Journal of Proteomics 2013.

1.1 Installation
isobar is part of Bioconductor. To install the latest stable version available for your version of R, start R and
enter:

> if (!requireNamespace("BiocManager", quietly=TRUE))
+ install.packages("BiocManager")
> BiocManager::install("isobar")

Bioconductor has semi-annual releases, and the releases are tied to specific to R versions. The latest de-
velopment version of isobar are always available at GitHub (https://github.com/fbreitwieser/
isobar). Use the devtools package to install it from the source:

> library(devtools)
> install_github("fbreitwieser/isobar")

1.2 Loading package
The first thing you need to do is load the package.

> library(isobar) ## load the isobar package

Check the installed version of isobar:

> packageVersion("isobar")

or equivalently for older versions of R:

> packageDescription("isobar")$Version

2 Loading data
isobar can read identifications and quantifications from tab-separated and MGF files. Perl scripts are sup-
plied to generate a tab-separated version from the vendor formats of Mascot and Phenyx, see appendix C. The
“ID.CSV” format is described in appendix A. Rockerbox and MSGF+ CSV file formats can be read, too, and
are recognized by their file extension (peptides.csv and msgfp.csv). Experimental support for the mzI-
dentML format is also available - please contact the maintainer in case of problems.

ID.CSV tab-separated file containing peptide-spectra matches and spectrum meta-information such as retention
time, m/z and charge. Generated by parser scripts.

2

http://www.bioconductor.org/packages/release/bioc/html/isobar.html
https://github.com/fbreitwieser/isobar
https://github.com/fbreitwieser/isobar

MGF contains peak lists from which quantitative information on reporter tags are extracted. Must be centroided.

IBSPECTRA.CSV tab-separated file containing the same columns as ID.CSV plus quantitative information
extracted from MGF file - that means the reporter tag masses and intensities as additional columns.

readIBSpectra is the primary function to generate a IBSpectra object. The first argument is one
of iTRAQ4plexSpectra, iTRAQ8plexSpectra, TMT2plexSpectra, TMT6plexSpectra and TMT10plexSpectra de-
notes the tag type and therefore class.

> ## generating IBSpectra object from ID.CSV and MGF
> ib <- readIBSpectra("iTRAQ4plexSpectra",list.files(pattern=".id.csv"),
+ list.files(pattern=".mgf"))
> ## write in tabular IBSPECTRA.CSV format to file
> write.table(as.data.frame(ib),sep="\t",row.names=F,
+ file="myexperiment.ibspectra.csv")
> ## generate from saved IBSPECTRA.CSV - MGF does not have to be supplied
> ib.2 <- readIBSpectra("iTRAQ4plexSpectra","myexperiment.ibspectra.csv")

In case the MGF file is very big, it can be advanteguous to generate a smaller version containing only meta-
and quantitative information before import in R. On Linux, the tool grep is readily available.

egrep '^[A-Z]|^1[12][0-9]\.' BIG.mgf > SMALL.mgf

2.1 ibspiked test samples
The examples presented are based on the dataset ibspiked_set1 which has been designed to test isobar’s
functionality and searched against the Swissprot human database with Mascot and Phenyx. ibspiked_set1
is an iTRAQ 4-plex data set comprised of a complex background (albumin- and IgG-depleted human plasma)
and spiked proteins. MS analysis was performed in ThermoFisher Scientific LTQ Orbitrap HCD instrument with
2D shotgun peptide separation (see original paper for more details). The samples used for each iTRAQ channel
are as follows:

• Depleted human plasma background (>150 protein detected);

• Spiked-in proteins with the following ratios

– CERU_HUMAN (P00450) at concentrations 1 : 1 : 1 : 1;

– CERU_RAT (P13635) at concentrations 1 : 2 : 5 : 10;

– CERU_MOUSE (Q61147) at concentrations 10 : 5 : 2 : 1.

A second data set with ratios 1:10:50:100 is available as ibspiked_set2 from http://bininformatics.
cemm.oeaw.ac.at/isobar.

The Ceruplasmins have been selected as the share peptides. Hereafter, we load the data pacakage and the
ceru protein IDs are identified via the protein.g function, which provides a mean to retrieve data from
ProteinGroup objects. ProteinGroup is a slot of IBSpectra objects and contains informations on
proteins and their grouping. See 2.2.

> data(ibspiked_set1)
> ceru.human <- protein.g(proteinGroup(ibspiked_set1),"CERU_HUMAN")
> ceru.rat <- protein.g(proteinGroup(ibspiked_set1),"CERU_RAT")
> ceru.mouse <- protein.g(proteinGroup(ibspiked_set1),"CERU_MOUSE")
> ceru.proteins <- c(ceru.human,ceru.rat,ceru.mouse)

3

http://bininformatics.cemm.oeaw.ac.at/isobar
http://bininformatics.cemm.oeaw.ac.at/isobar

2.2 Protein information and grouping in ProteinGroup
When an ibspectra.csv is read, protein are grouped to identify proteins which have unique peptides. By
default, only peptides with unique peptides are grouped.

The algorithm to infer protein groups works as follows:

1. Group proteins together which have been seen with exactly the same peptides (indistinguishableProteins)
- these are the protein.g identifiers.

2. Create protein groups (proteinGroupTable):

(a) Define proteins with specific peptides as reporters (reporterProteins)

(b) Get proteins which are contained 1 by reporterProteins and group them below.

3. Create protein groups for proteins without specific peptides as above.

2.3 Loading data from CID/HCD (or CID/MS3, etc) experiments
A combined CID/HCD approach, in which for each precursor two fragmentation spectra are acquired, has proven
useful to increase the number of identified and quantified peptide-spectrum matches. Usually, the reporter inten-
sity information is taken from the HCD spectrum, and the peptide is identified based on the fragment ions in the
CID spectrum.

To import these experiments, a comma-separated mapping file is needed, which contains the association from
the identification to the quantification spectrum title.

Example mapping file (mapping.csv):

"hcd","cid"
"spectrum 1","spectrum 2"
"spectrum 3","spectrum 4"

By calling readIBSpectrawith mapping.file="mapping.csv", the spectra titles in the id.file
are matched to those in the peaklist.file. If the column names for the quantification and identification
spectrum are not hcd and cid, resp., they can be set with the argument mapping=c(identification.spectrum="column
name 1",quantification.spectrum="column name 2").

Example mapping file mapping2.csv:

"quant-spectrum-ms3","id-spectrum-ms2"
"spectrum 1","spectrum 2"
"spectrum 3","spectrum 4"

> readIBSpectra(...,
+ mapping.file="mapping2.csv",
+ mapping=c(identification.spectrum="id-spectrum-ms2",
+ quantification.spectrum="quant-spectrum-ms3")
+)

The argument mapping.file can take multiple files as argument (which are read and concatenated), or a
data.frame.

1That means these proteins have a subset of the peptides of the reporter

4

2.4 Loading data from CID/HCD experiments with full HCD spectrum
If a full HCD spectrum was acquired, and both the HCD and CID spectrum are searched against a protein
database, the argument id.file.domap to readIBSpectra can be used to merge both CID and HCD
identifications:

> readIBSpectra("TMT6plexSpectra",
+ id.file="cid.identifications.csv",
+ peaklist.file="hcd.peaklist.mgf",
+ id.file.domap="hcd.identifications.csv",
+ mapping.file="mapping.csv",
+ ...
+)

Here, the CID (cid.identifications.csv) and HCD identifications (hcd.identifications.csv)
are combined and mapped according to mapping.csv. Diverging identifications are discarded.

2.5 Integrating and thresholding precursor purity measures
Savitzki et al., 2011 describe a measure for the precursor purity of fragment spectra. An implementation of
the algorithm for the multiplierz platform is provided at http://sourceforge.net/apps/trac/
multiplierz/wiki/Precursors. The script creates _precursors.txt files for each RAW file. To
integrate and threshold based on the s2i measure, use the following code:

> precursors <- read.delim("file1_precursors.txt",header=TRUE,sep="\t",stringsAsFactors=FALSE)
> idfile <- read.delim("file1.id.csv",header=TRUE,sep="\t",stringsAsFactors=FALSE)
> idfile <- merge(idfile,precursors,
+ by.x=c("fixed_spectrum","scans.from"),
+ by.y=c("fixed_spectrum","SCAN"),all.x=TRUE) # FIXME see /work/analysis/gwinter/raw-spectra/analysis.R

2.6 MSnbase integration
NOTE: It has been reported that the conversion functions are not functional for current versions of the package.
We will try to resolve this.

MSnbase by Laurent Gatto provides data manipulation and processing methods for MS-based proteomics
data. It provides import, representation and analysis of raw MS data stored in mzXML, mzML and mzData using
the mzR package and centroided and un-centroided MGF peak lists. It allows to use and preprocess raw data
whereas isobar requires centroided peak lists. In the future, the isobar class IBSpectra might be based
on or replaced by MSnbase’s class MSnSet. For now, methods for coercion are implemented:

> as(ibspectra,"MSnSet")
> as(msnset,"IBSpectra")

3 Data Analysis

3.1 Reporter mass precision
The distribution of observed masses from the reporter tags can be used to visualize the precision of the MS setup
on the fragment level and used to set the correct window for isolation.

The expected masses of the reporter tags are in the slot reporterTagMasses of the implementations
of the IBSpectra class. The experimental masses are in the matrix mass of AssayData; they can also be
accessed by the method reporterMasses(x).

5

http://sourceforge.net/apps/trac/multiplierz/wiki/Precursors
http://sourceforge.net/apps/trac/multiplierz/wiki/Precursors

3.2 MSnbase integration
NOTE: It has been reported that the conversion functions are not functional for current versions of the package.
We will try to resolve this.

MSnbase by Laurent Gatto provides data manipulation and processing methods for MS-based proteomics
data. It provides import, representation and analysis of raw MS data stored in mzXML, mzML and mzData using
the mzR package and centroided and un-centroided MGF peak lists. It allows to use and preprocess raw data
whereas isobar requires centroided peak lists. In the future, the isobar class IBSpectra might be based
on or replaced by MSnbase’s class MSnSet. For now, methods for coercion are implemented:

> as(ibspectra,"MSnSet")
> as(msnset,"IBSpectra")

4 Data Analysis

4.1 Reporter mass precision
The distribution of observed masses from the reporter tags can be used to visualize the precision of the MS setup
on the fragment level and used to set the correct window for isolation.

The expected masses of the reporter tags are in the slot reporterTagMasses of the implementations
of the IBSpectra class. The experimental masses are in the matrix mass of AssayData; they can also be
accessed by the method reporterMasses(x).

> sprintf("%.4f",reporterTagMasses(ibspiked_set1)) ## expected masses

[1] "114.1112" "115.1083" "116.1116" "117.1150"

> mass <- assayData(ibspiked_set1)[["mass"]] ## observerd masses
> apply(mass,2,function(x) sprintf("%.4f",quantile(x,na.rm=TRUE,probs=c(0.025,0.975))))

114 115 116 117
[1,] "114.1110" "115.1081" "116.1115" "117.1148"
[2,] "114.1116" "115.1087" "116.1120" "117.1153"

reporterMassPrecision provides a plot of the distribution.

> print(reporterMassPrecision(ibspiked_set1))

4.2 Normalization and isotope impurity correction
Isotope impurity correction factors are supplied by labelling reagent manufacturers. Default values that can be
modified by the user are available in isobar and corrections are obtained by simple linear algebra.

Due to differences between samples it is advisable to normalize data before further processing. By default,
normalize corrects by a factor such that the median intensities in all reporter channels are equal.

See figure 2.

> ib.old <- ibspiked_set1
> ibspiked_set1 <- correctIsotopeImpurities(ibspiked_set1)
> ibspiked_set1 <- normalize(ibspiked_set1)

6

114: m/z 114.11 115: m/z 115.11 116: m/z 116.11 117: m/z 117.11

−1e−03
−5e−04

0e+00
5e−04

1e−03
−1e−03

−5e−04
0e+00

5e−04
1e−03

−1e−03
−5e−04

0e+00
5e−04

1e−03
−1e−03

−5e−04
0e+00

5e−04
1e−03

0

2000

4000

mass difference theoretical vs observed reporter tag mass

co
un

t

Figure 1: Reporter mass precision plot.

> par(mfrow=c(1,2))
> maplot(ib.old,channel1="114",channel2="117",ylim=c(0.5,2),
+ main="before normalization")
> abline(h=1,col="red",lwd=2)
> maplot(ibspiked_set1,channel1="114",channel2="117",ylim=c(0.5,2),
+ main="after normalization")
> abline(h=1,col="red",lwd=2)

Figure 2: Ratio versus intensity plots (’MA plots’) before and after applying normalization.

4.3 Fitting a noise model
A noise model is a approximation of the expected technical variation based on signal intensity. It is stable for a
certain experimental setup and thus can be learned once. Noise is observed directly when comparing identical
samples in multiple channels (1:1 iTRAQ/TMT sample) and we can use ibspiked_set1 background proteins
as a 1:1 sample. Therefore we exclude the ceruplasmins before fitting a noise model using NoiseModel. See
figure 3.

7

> ib.background <- subsetIBSpectra(ibspiked_set1,protein=ceru.proteins,direction="exclude")
> noise.model <- NoiseModel(ib.background)

[1] 0.03333677 9.57308833 1.35782023

Though only recommended when sufficient data are available, a method exist for the estimation of a noise
model without a 1:1 dataset. It takes longer time as it first computes all the protein ratios to shift spectrum
ratios to 1:1. To examplify this procedure, we only take rat and mouse CERU proteins from ibspiked_set1,
see figure 3. The resultant noise model is a rough approximation only because of the very limitted data, see
Breitwieser et al. Supporting Information, submitted, for a real example.

> ib.ceru <- subsetIBSpectra(ibspiked_set1,protein=ceru.proteins,
+ direction="include",
+ specificity="reporter-specific")
> nm.ceru <- NoiseModel(ib.ceru,one.to.one=FALSE,pool=TRUE)

3 proteins with more than 10 spectra, taking top 50.
[1] 0.0000000001 0.4177839001 0.1950037595

> maplot(ib.background,noise.model=c(noise.model,nm.ceru),
+ channel1="114",channel2="115",ylim=c(0.2,5),
+ main="95% CI noise model")

4.4 Protein and peptide ratio calculation
estimateRatio calculates the relative abundance of a peptide or protein in one tag compared to another.
It calculates a weighted average (after outlier removal) of the spectrum ratios. The weights are the inverse of
the spectrum ratio variances. It requires a IBSpectra and NoiseModel object and definitions of channel1,
channel2, and the protein or peptide. The result is channel2/channel1.

> ## Calculate ratio based on all spectra of peptides specific
> ## to CERU_HUMAN, CERU_RAT or CERU_MOUSE. Returns a named
> ## numeric vector.
> 10^estimateRatio(ibspiked_set1,noise.model,
+ channel1="114",channel2="115",
+ protein=ceru.proteins)['lratio']

lratio
0.9344642

> ## If argument 'combine=FALSE', estimateRatio returns a data.frame
> ## with one row per protein
> 10^estimateRatio(ibspiked_set1,noise.model,
+ channel1="114",channel2="115",
+ protein=ceru.proteins,combine=FALSE)[,'lratio']

[1] 1.0492478 1.8665298 0.4956441

> ## spiked material channel 115 vs 114:
> ## CERU_HUMAN (P00450): 1:1
> ## CERU_RAT (P13635): 2:1 = 2
> ## CERU_MOUSE (Q61147): 5:10 = 0.5

8

Figure 3: Red lines denote the 95 % confidence interval as estimated by the noise model on background
proteins. The blue line is estimated as non 1:1 noise model based on only spectra of CERU proteins.

9

>
> ## Peptides shared between rat and mouse
> pep.shared <- peptides(proteinGroup(ibspiked_set1),
+ c(ceru.rat,ceru.mouse),set="intersect",
+ columns=c('peptide','n.shared.groups'))
> ## remove those which are shared with other proteins
> pep.shared <- pep.shared$peptide[pep.shared$n.shared.groups==2]
> ## calculate ratio: it is between the rat and mouse ratios
> 10^estimateRatio(ibspiked_set1,noise.model,
+ channel1="114",channel2="115",
+ peptide=pep.shared)['lratio']

lratio
0.6314602

When examining the global differences and differences in between classes, proteinRatios can be
used. It is also suitable to inspect sample variability. The argument cl can be used to define class labels. If
combn.method=’interclass’ or intraclass and summarize=TRUE, proteinRatios return a
single summarized ratio across and within classes, resp..

> protein.ratios <- proteinRatios(ibspiked_set1,noise.model,cl=c("1","0","0","0"))
> ## defined class 114 and 115 as class 'T', 116 and 117 as class 'C'
> classLabels(ibspiked_set1) <- c("T","T","C","C")
> proteinRatios(ibspiked_set1,noise.model,protein=ceru.proteins,
+ cl=classLabels(ibspiked_set1),combn.method="interclass",
+ summarize=T)[,c("ac","lratio","variance")]

ac lratio variance
1 P00450 0.006986124 0.0006221153
2 P13635 0.583020063 0.0504077253
3 Q61147 -0.564037705 0.0471635852

4.5 Protein ratio distribution and selection
Protein ratio distributions can be calculated ideally on biological replicated. To examine differentially expressed
proteins, both sample variability information (random protein ratios) as a fold-change constraint, and ratio pre-
cision can be used. For a experimental setup with biolgical replicates in the same experiment (but different
channels), the distribution of biological variability can be learned by computing the ratios between the replicates.
With no replicates available, one has the choice to (a) model the actual protein ratios and just select the most ex-
treme ratios; (b) learn the distribution from a previous experiment; or (c) assume a standard Cauchy distribution
with location 0 and scale 0.1, 0.05, and 0.025, which correspond with α = 0.05 roughly to fold changes of 4, 2,
and 1.5.

A Cauchy distribution fits accurately this type of random protein ratio distribution: Cauchy is displayed in
red, Gaussian in blue. In the case of ibspiked_set1, the many 1:1 proteins provide us with adequate data to
learn the random protein ratio distribution, however only of the technical variation.

> #protein.ratios <- proteinRatios(ibspiked_set1,noise.model)
> protein.ratiodistr.wn <- fitWeightedNorm(protein.ratios[,'lratio'],
+ weights=1/protein.ratios[,'variance'])
> protein.ratiodistr.cauchy <- fitCauchy(protein.ratios[,"lratio"])

10

> library(distr) # required library
> limits=seq(from=-0.5,to=0.5,by=0.001)
> curve.wn <- data.frame(x=limits,y=d(protein.ratiodistr.wn)(limits))
> curve.cauchy<-data.frame(x=limits,y=d(protein.ratiodistr.cauchy)(limits))
> g <- ggplot(data.frame(protein.ratios),aes(x=lratio)) +
+ geom_histogram(colour = "darkgreen", fill = "white",aes(y=..density..),
+ binwidth=0.02) + geom_rug() +
+ geom_line(data=curve.wn,aes(x=x,y=y),colour="blue") +
+ geom_line(data=curve.cauchy,aes(x=x,y=y),colour="red")
> print(g)

0

5

10

15

−0.5 0.0 0.5 1.0
lratio

de
ns

ity

Figure 4: Histogram of all protein ratios in ibspiked_set1. A fit with a Gaussian and Cauchy
probability density function is shown in blue and red, respectively.

11

Now, when supplying a ratiodistr parameter to estimateRatio and proteinRatios, sample
and signal p-values are calculated, what we illustrate in the code below

> rat.list <-
+ estimateRatio(ibspiked_set1,noise.model=noise.model,channel1="114",channel2="115",
+ protein=reporterProteins(proteinGroup(ibspiked_set1)),combine=F,
+ ratiodistr=protein.ratiodistr.cauchy)
> rat.list[rat.list[,"is.significant"]==1,]

lratio variance var_hat_vk n.spectra n.na1 n.na2 p.value.rat
P13635 0.2710349 0.006274397 8.461878e-05 242 0 0 3.535261e-04
Q61147 -0.3048301 0.001038084 8.877274e-07 139 0 0 6.689858e-22

p.value.sample p.value is.significant
P13635 0.02229517 0.02539988 1
Q61147 0.01945302 0.01967245 1

4.6 Detection of proteins with no specific peptides
It is well known that MS analysis only reveals the presence of so-called protein groups, defined as sets of proteins
identified by the same set of peptides. The protein that contains all the peptides is the group reporter (there are
possibly several group reporters) and if it has one specific peptide at least then its presence in the sample is
certain. The status of the other proteins in the group is in general impossible to determine. When quantitative
information is available, there is a potential to elucidate the structure of part of the protein groups.

In the example below, a subset IBSpectra object is created, containing only peptides shared between
CERU_RAT and CERU_MOUSE, and those specific to CERU_RAT.

> ## peptides shared between CERU_RAT and CERU_MOUSE have been computed before
> pep.shared

[1] "AGLQAFFQVR" "DNEEFLESNK" "DTANLFPHK" "EMGPTYADPVCLSK"
[5] "ETFTYEWTVPK" "GSLLADGR" "KGSLLADGR" "LYHSHVDAPK"
[9] "NMATRPYSLHAHGVK" "RDTANLFPHK" "VFFEQGATR"

> ## peptides specific to CERU_RAT
> pep.rat <- peptides(proteinGroup(ibspiked_set1),protein=ceru.rat,
+ specificity="reporter-specific")
> ## create an IBSpectra object with only CERU_RAT and shared peptides
> ib.subset <- subsetIBSpectra(ibspiked_set1,
+ peptide=c(pep.rat,pep.shared),direction="include")
> ## calculate shared ratios
> sr <- shared.ratios(ib.subset,noise.model,
+ channel1="114",channel2="117",
+ ratiodistr=protein.ratiodistr.cauchy)
> sr

reporter.protein protein2 ratio1 ratio1.var n.spectra.1 ratio2
lratio P13635 Q61147 0.9296973 0.0132681 241 0.00909977

ratio2.var n.spectra.2
lratio 0.001535065 273

>

12

> ## plot significantly different protein groups where 90% CI does not overlap
> ## CERU_MOUSE and CERU_RAT is detected, as expected.
> shared.ratios.sign(sr,z.shared=1.282)

reporter.protein protein2 n.spectra.1 n.spectra.2 proteins
1.1 P13635 Q61147 241 273 P13635 \nvs Q61147
1.2 P13635 Q61147 241 273 P13635 \nvs Q61147

g ratio var n.spectra id
1.1 reporter 0.92969725 0.013268101 > 10 1
1.2 member 0.00909977 0.001535065 > 10 1

P13635
vs Q61147

2 3 4 5
Ratio

pr
ot

ei
ns

group

reporter

member

Figure 5: Peptides of spiked ceruplasmins have significantly different ratios between groups. Group
reporter consists of peptides specific to CERU_RAT (P13635), group member are peptides shared
between CERU_RAT and CERU_MOUSE (Q61147).

5 Report generation
isobar provides a rich interface for creating Excel and PDF reports for further analysis and quality control.
The main entry function is create.reports. Alternatively the Rscript create_reports.R can be used.
It is located in the report folder of the isobar installation, and reads the properties from a file in the working
directory.

The posible values are defined in the report/properties.R file in the isobar installation. To generate
a report with standard properties the following code should do the trick:

> create.reports(type="iTRAQ4plexSpectra",
+ identifications="my.id.csv",peaklist="my.mgf")

The properties can also be defined in a properties.R file which is located in the working directory. The
properties are set in the following order:

• ’global’ properties in ISOBAR-DIRECTORY/report/properties.R2

• ’local’ properies in WORKING-DIRECTORY/properties.R

• command line arguments to create_reports.R or create.reports function

Appendix B provides a syntax-highlighted version of the properties file supplied with isobar, which sets the
default parameters and provides some help in the comments. The number of paramters which can be set may
seem a lot at first, however most times only a few are needed.

For successful completion, LATEX- for the PDF reports - and Perl - for the Excel reports - need to be installed.

2located in system.file(’report’,’properties.R’,package=’isobar’)

13

5.1 Files used for report generation
> ## execute to find the path and file location in your installation.
> system.file("report",package="isobar") ## path
> list.files(system.file("report",package="isobar")) ## files

create_reports.R R script which can be used to create QC and PDF reports It initializes the environment, reads
properties and calls Sweave on QC and DA Sweave files. Additionally it generates a Excel data analysis
report by calling tab2xls.pl.

isobar-qc.Rnw Sweave file with quality control plots.

isobar-analysis.Rnw Sweave file for generating a data analysis report with the list of all protein ratios and list
of significantly different proteins.

properties.R Default configuration for create_reports.R. It is parsed as R code.

report-utils.R Helper R functions used in Sweave documents.

report-utils.tex Helper LATEX functions used in Sweave documents.

A File formats

A.1 ID CSV file format
The Perl parsers create ID CSV files - identification information for all matched spectra without quantitative
information. You can create your own parser, the resulting file should be tab-delimited and contain the following
columns. Only bold columns are obligatory. The information is redundant - that means if a peptide may stem
from two different proteins the information of the identification is repeated.

accession Protein AC
peptide Peptide sequence

modif Peptide modification string
charge Charge state

theo.mass Theoretical peptide mass
exp.mass Experimentally observed mass

parent.intens Parent intensity
retention.time Retention time

spectrum Spectrum identifier
search.engine Protein search engine and score

A.2 IBSpectra CSV file format
IBSpectra file format has the same columns as the ID CSV format and additionally columns containing the
quantitation information, namely Xtagname_mass and Xtagname_ions, for mass and intensity of each tag
tagname. Below an example of the further columns for an iTRAQ 4plex IBSpectra.

X114_mass reporter ion mass
X115_mass reporter ion mass
X116_mass reporter ion mass
X117_mass reporter ion mass
X114_ions reporter ion intensity
X115_ions reporter ion intensity
X116_ions reporter ion intensity
X117_ions reporter ion intensity

14

B properties.R for report generation

##
Isobar properties.R file
for automatic report generation
##
It is standard R code and parsed using sys.source

###
General properties

Report type: Either ’protein’ or ’peptide’
report.level="peptide"
report.level="protein"
#attr(report.level,"allowed.values") <- c("protein","peptide")

Isobaric tagging type. Use one of the following:
type=’iTRAQ4plexSpectra’
type=’iTRAQ8plexSpectra’
type=’TMT2plexSpectra’
type=’TMT6plexSpectra’
type=NULL
#attr(type,"allowed.values") <- IBSpectraTypes()

isotope.impurities=NULL
correct.isotope.impurities=TRUE

Name of project, by default the name of working directory
Will be title and author of the analysis reports.
name=basename(getwd())
author=paste0("isobar R package v",packageDescription("isobar")$Version)

specifes the IBSpectra file or object
- can be a data.frame (e.g. ibspectra=as.data.frame(ibspiked_set1))
- if it is a character string, it is assumed to be a file
- if it ends on .rda, then it is assumed to be a R data object
- if it does not exists, then it is may generated based on
the peaklist and identifications properties
ibspectra=paste(name,"ibspectra.csv",sep=".")

When replicates or ’samples belonging together’ are analyzed, a
ProteinGroup object based on all data should be constructed
beforehand. This then acts as a template and a subset is used.
protein.group.template=NULL

Via database or internet connection, informations on proteins (such
as gene names and length) can be gathered. protein.info.f defines
the function which takes a ProteinGroup object as argument
protein.info.f=getProteinInfoFromTheInternet

Where should cached files be saved? Will be created if it does not
exist
cachedir="."
cachedir="cache"
Regenerate cache files? By default, chache files are used.

15

regen=FALSE

An ibspectra object can be generated from peaklists and
identifications.

peaklist files for quantitation, by default all mgf file in
directory
peaklist=list.files(pattern="*\\.mgf$")
id files, by default all id.csv files in directory
identifications=list.files(pattern="*\\.id.csv$")
mapping files, for data quantified and identified with different but
correspoding spectra. For example corresponding HCD-CID files.

masses and intensities which are outside of the ’true’ tag mass
+/- fragment.precision/2 are discarded
fragment.precision=0.01
filter mass outliers
fragment.outlier.prob=0.001

Additional arguments of readIBSpectra can be set here
decode.titles should be set to TRUE for Mascot search results
as Mascot encodes the spectrum title (e.g. space -> %20)
readIBSpectra.args = list(

mapping.file=NULL,
decode.titles=FALSE

)

###
Quantification properties

normalize=TRUE
if defined, normalize.factors will be used for normalization
normalize.factors=NULL
normalize.channels=NULL
normalize.use.protein=NULL
normalize.exclude.protein=NULL
normalize.function=median
normalize.na.rm=FALSE

peptide.specificity=REPORTERSPECIFIC

use.na=FALSE

the parameter noise.model can be either a NoiseModel object or a file name
data(noise.model.hcd)
noise.model=noise.model.hcd
If it is a file name, a noise model is estimated as non one-to-one
and saved into the file. otherwise, the noise model is loaded from
the file
noise.model="noise.model.rda"

Define channels for creation of a noise model, ideally a set of
channels which are technical replicates.
noise.model.channels=NULL

16

If noise.model.is.technicalreplicates is FALSE, the intensities
are normalized for protein means, creating artifical technical
replicates. For this procedure, only proteins with more than
noise.model.minspectra are considered.
noise.model.is.technicalreplicates=FALSE
noise.model.minspectra=50

class labels. Must by of type character and of same length as
number of channels I. e. 4 for iTRAQ 4plex, 6 for TMT 6plex Example
for iTRAQ 4plex:
Class definitions of the isobaric tag channels.
A character vector with the same length as channels
(e.g. 4 for iTRAQ 4plex, 6 for TMT 6plex)
Example for iTRAQ 4plex:
class.labels=as.character(c(1,0,0,0))
class.labels=c("Treatment","Treatment","Control","Control")
Also names are possible - these serves as description in the report
and less space is used in the rows
class.labels=c("Treatment"="T","Treatment"="T","Control"="C","Control"="C")
class.labels=NULL

The following parameters define which ratios are calculated.

summarize ratios with equal class labels, set to TRUE when replicates are used
summarize=FALSE

combn.method defines which ratios are calculated - versus a channel or a class,
all the ratios within or across classes, or all possible combinatioins.
When summarize=TRUE is set, use "interclass", "versus.class", or "intraclass"
combn.method="global"
combn.method="versus.class"
combn.method="intraclass"
combn.method="interclass"
combn.method="versus.channel"
vs.class=NULL

cmbn=NULL

Arguments given to ’proteinRatios’ function. See ?proteinRatios
ratios.opts = list(

sign.level.sample=0.05,
sign.level.rat=0.05,
groupspecific.if.same.ac=TRUE)

quant.w.grouppeptides=c()

min.detect=NULL

preselected=c()

Biological Variability Ratio Distribution options
ratiodistr can be set to a file or a ’Distribution object. ’ If
NULL, or the specified file is not existent, the biological
variability of ratios is estimated on the sample at hand and
written to cachedir/ratiodistr.rda or the specified file.

17

ratiodistr=NULL

Ideally, when the biological variability is estimated for the
sample at hand, a biological replicate is present (/ie/ same class
defined in class labels). Classes can also be assigned just for
estimation of the ratio distribution, /eg/ to choose biologically
very similar samples as pseudo replicates.
ratiodistr.class.labels=NULL

Function for fitting. Available: fitCauchy, fitTlsd
ratiodistr.fitting.f=fitCauchy

Use symetrical ratios - i.e. for every ratio r add a ratio -r
prior to fitting of a distribution
ratiodistr.symmetry=TRUE

If defined, use z-score instead of ratio distribution
zscore.threshold=2.5
zscore.threshold=NULL

##
PTM properties

PhosphoSitePlus dataset which can be used to annotate known
modification sites. Download site:
http://www.phosphosite.org/staticDownloads.do
phosphosite.dataset <- NULL

Modification to track. Use ’PHOS’ for phosphorylation.
ptm <- c(’ACET’,’METH’,’UBI’,’SUMO’, ’PHOS’)
ptm <- NULL

file name of rda or data.frame with known modification sites
gathered with ptm.info.f. defaults to ’cachedir/ptm.info.rda’
ptm.info <- NULL

Function to get PTM modification sites from public datasets
ptm.info.f <- getPtmInfoFromNextprot
ptm.info.f <- function(...)
getPtmInfoFromPhosphoSitePlus(...,modification="PHOS")
ptm.info.f <- function(...)
getPtmInfoFromPhosphoSitePlus(...,modification=ptm)
ptm.info.f <- getPtmInfoFromNextprot

A protein quantification data.frame (generated with
’proteinRatios’). The ratio and variance are used to correct the
observed modified peptide ratios Needs to have the experimental
setup as the modified peptide experiment
correct.peptide.ratios.with <- NULL
Protein groups to use with correct.peptide.ratios()
correct.peptide.ratios.with_protein.group <- NULL

The correlation between peptide and protein ratios defines the
covariance

18

Var(ratio m) = Var(ratio mp) + Var(ratio p)
+ 2 * Cov(ratio mp, ratio p),
Cov(ratio mp, ratio p) = 2 * cor * Sd(ratio mp) * Sd(ratio p),
with m = modifcation, mp = modified peptide, p = protein
peptide.protein.correlation <- 0

quantification table whose columns are attached to the XLS
quantification table
compare.to.quant <- NULL

###
Report properties

write.qc.report=TRUE
write.report=TRUE
write.xls.report=TRUE

Use name for report, ie NAME.quant.xlsx instead of
isobar-analysis.xlsx
use.name.for.report=TRUE

PDF Analysis report sections: Significant proteins and protein
details
show.significant.proteins=FALSE
show.protein.details=TRUE

QC REPORT OPTIONS
#qc.maplot.pairs=FALSE # plot one MA plot per tag (versus all others)
qc.maplot.pairs=TRUE # plot MA plot of each tag versus each tag

XLS REPORT OPTIONS
Spreadsheet format: Either ’xlsx’ or ’xls’
spreadsheet.format="xlsx"
spreadsheet.format="xlsx"

XLS report format ’wide’ or ’long ’.

’wide’ format outputs ratios in separate columns of the same record
(i.e. one line per protein)
’long’ format outputs ratios in separate records (i.e. one line per
ratio)
xls.report.format="wide"
xls.report.format="long"

XLS report columns in quantification tab
possible values: ratio, is.significant, CI95.lower, CI95.upper,
ratio.minus.sd, ratio.plus.sd,
p.value.ratio, p.value.sample, n.na1, n.na2,
log10.ratio, log10.variance,
log2.ratio, log2.variance
only for summarize=TRUE: n.pos, n.neg
xls.report.columns <- c("ratio","is.significant","ratio.minus.sd",

"ratio.plus.sd","p.value.ratio","p.value.sample",
"log10.ratio","log10.variance")

19

Perl command to be used for Excel report generation
perl.cmd = "C:/Strawberry/perl/bin/perl.exe"
perl.cmd = "C:/Perl/bin/perl.exe"
perl.cmd = "perl5"
perl.cmd = "perl"

###
Etc

sum.intensities=FALSE

datbase="Uniprot"

scratch=list()

##
compile LaTeX reports into PDF files
compile=TRUE

zip final report files into archive
zip=FALSE

warning level (see ’warn’ in ?options)
warning.level=1

###
Novel options

shrink.mean=TRUE
use.t.stat=TRUE

C Dependencies

C.1 LATEX and PGF/TikZ
LATEX is a high-quality typesetting system; it includes features designed for the production of technical and
scientific documentation. It is available as free software3. PGF is a TEX macro package for generating graphics
It comes with a user-friedly syntax layer called TikZ4.

LATEX is used for creating PDF analysis reports, with the PGF package creating the graphics. Go to http://
www.latex-project.org to get information on how to download and install a LATEX system and packages.

C.2 Perl
Perl is a high-level, general-purpose, interpreted, dynamic programming language. Perl is required for two tasks:

• Conversion of Pidres XML and Mascot DAT files to ID CSV format;

• Creation of Microsoft Excel format data analysis report.

Go to http://www.perl.org to download and get help on the installation of Perl on your Operating System.
For file format conversion, perl module Statistics::Lite is required. For Excel export Spreadsheet::WriteExcel.
All Perl scripts are in the subdirectory pl of the isobar package installation.

3http://www.latex-project.org
4http://sourceforge.net/projects/pgf

20

http://www.latex-project.org
http://www.latex-project.org
http://www.perl.org
http://www.latex-project.org
http://sourceforge.net/projects/pgf

> ## execute to find the path and file location in your installation.
> system.file("pl",package="isobar") ## path
> list.files(system.file("pl",package="isobar")) ## files

mascotParser2.pl and pidresParser2.pl convert from respective protein search outputfiles to a
XML file format, which can be converted into a CSV file readable by isobar by using psx2tab2.pl.

mascotParser2.pl coverts from Mascot format, and requires the file modifconv.csv as a definition
of modification names. pidresParser2.pl converts from Phenyx output and requires the file parsersConfig.xml.
tab2xls.pl converts csv file to different sheets of an Excel spreadsheet.

> ## execute on your system
> system(paste("perl",system.file("pl","mascotParser2.pl",package="isobar"),
+ "--help"))
> print(paste("perl",system.file("pl","pidresParser2.pl",package="isobar"),
+ "--help"))

D Session Information
The version number of R and packages loaded for generating the vignette were:

> toLatex(sessionInfo())

• R version 4.4.1 (2024-06-14), x86_64-pc-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_GB, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8,
LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

• Time zone: America/New_York

• TZcode source: system (glibc)

• Running under: Ubuntu 24.04.1 LTS

• Matrix products: default

• BLAS: /home/biocbuild/bbs-3.20-bioc/R/lib/libRblas.so

• LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0

• Base packages: base, datasets, grDevices, graphics, methods, stats, utils

• Other packages: Biobase 2.66.0, BiocGenerics 0.52.0, distr 2.9.5, ggplot2 3.5.1, isobar 1.52.0,
sfsmisc 1.1-19, startupmsg 0.9.7

• Loaded via a namespace (and not attached): AnnotationDbi 1.68.0, BiocFileCache 2.14.0,
Biostrings 2.74.0, DBI 1.2.3, GenomeInfoDb 1.42.0, GenomeInfoDbData 1.2.13, IRanges 2.40.0,
KEGGREST 1.46.0, MASS 7.3-61, R6 2.5.1, RSQLite 2.3.7, Rcpp 1.0.13, S4Vectors 0.44.0,
UCSC.utils 1.2.0, XVector 0.46.0, biomaRt 2.62.0, bit 4.5.0, bit64 4.5.2, blob 1.2.4, cachem 1.1.0,
cli 3.6.3, colorspace 2.1-1, compiler 4.4.1, crayon 1.5.3, curl 5.2.3, dbplyr 2.5.0, digest 0.6.37,
dplyr 1.1.4, fansi 1.0.6, farver 2.1.2, fastmap 1.2.0, filelock 1.0.3, generics 0.1.3, glue 1.8.0, grid 4.4.1,
gtable 0.3.6, hms 1.1.3, httr 1.4.7, httr2 1.0.5, jsonlite 1.8.9, labeling 0.4.3, lifecycle 1.0.4, magrittr 2.0.3,
memoise 2.0.1, munsell 0.5.1, pillar 1.9.0, pkgconfig 2.0.3, plyr 1.8.9, png 0.1-8, prettyunits 1.2.0,
progress 1.2.3, rappdirs 0.3.3, rlang 1.1.4, scales 1.3.0, stats4 4.4.1, stringi 1.8.4, stringr 1.5.1,
tibble 3.2.1, tidyselect 1.2.1, tools 4.4.1, utf8 1.2.4, vctrs 0.6.5, withr 3.0.2, xml2 1.3.6, zlibbioc 1.52.0

21

	Introduction
	Installation
	Loading package

	Loading data
	ibspiked test samples
	Protein information and grouping in ProteinGroup
	Loading data from CID/HCD (or CID/MS3, etc) experiments
	Loading data from CID/HCD experiments with full HCD spectrum
	Integrating and thresholding precursor purity measures
	MSnbase integration

	Data Analysis
	Reporter mass precision
	MSnbase integration

	Data Analysis
	Reporter mass precision
	Normalization and isotope impurity correction
	Fitting a noise model
	Protein and peptide ratio calculation
	Protein ratio distribution and selection
	Detection of proteins with no specific peptides

	Report generation
	Files used for report generation

	File formats
	ID CSV file format
	IBSpectra CSV file format

	properties.R for report generation
	Dependencies
	LaTeX and PGF/TikZ
	Perl

	Session Information

