params <- list(seed = 29221) ## ----eval=FALSE--------------------------------------------------------------- # if (!require("BiocManager")) { # install.packages("BiocManager") # } # BiocManager::install("glmSparseNet") ## ----packages, message=FALSE, warning=FALSE, results='hide'------------------- library(dplyr) library(ggplot2) library(survival) library(futile.logger) library(curatedTCGAData) library(MultiAssayExperiment) library(TCGAutils) # library(glmSparseNet) # # Some general options for futile.logger the debugging package flog.layout(layout.format("[~l] ~m")) options( "glmSparseNet.show_message" = FALSE, "glmSparseNet.base_dir" = withr::local_tempdir() ) # Setting ggplot2 default theme as minimal theme_set(ggplot2::theme_minimal()) ## ----curated_data, include=FALSE, results="hide", message=FALSE, warning=FALSE---- brca <- tryCatch( { curatedTCGAData( diseaseCode = "BRCA", assays = "RNASeq2GeneNorm", version = "1.1.38", dry.run = FALSE ) }, error = function(err) { NULL } ) ## ----curated_data_non_eval, eval=FALSE---------------------------------------- # brca <- curatedTCGAData( # diseaseCode = "BRCA", assays = "RNASeq2GeneNorm", # version = "1.1.38", dry.run = FALSE # ) ## ----data.show, warning=FALSE, error=FALSE, eval=!is.null(brca)--------------- brca <- TCGAutils::TCGAsplitAssays(brca, c("01", "11")) xdataRaw <- t(cbind(assay(brca[[1]]), assay(brca[[2]]))) # Get matches between survival and assay data classV <- TCGAbiospec(rownames(xdataRaw))$sample_definition |> factor() names(classV) <- rownames(xdataRaw) # keep features with standard deviation > 0 xdataRaw <- xdataRaw[, apply(xdataRaw, 2, sd) != 0] |> scale() set.seed(params$seed) smallSubset <- c( "CD5", "CSF2RB", "HSF1", "IRGC", "LRRC37A6P", "NEUROG2", "NLRC4", "PDE11A", "PIK3CB", "QARS", "RPGRIP1L", "SDC1", "TMEM31", "YME1L1", "ZBTB11", sample(colnames(xdataRaw), 100) ) xdata <- xdataRaw[, smallSubset[smallSubset %in% colnames(xdataRaw)]] ydata <- classV ## ----fit.show, eval=!is.null(brca)-------------------------------------------- fitted <- cv.glmHub(xdata, ydata, family = "binomial", network = "correlation", nlambda = 1000, options = networkOptions( cutoff = .6, minDegree = .2 ) ) ## ----results, eval=!is.null(brca)--------------------------------------------- plot(fitted) ## ----show_coefs, eval=!is.null(brca)------------------------------------------ coefsCV <- Filter(function(.x) .x != 0, coef(fitted, s = "lambda.min")[, 1]) data.frame( ensembl.id = names(coefsCV), gene.name = geneNames(names(coefsCV))$external_gene_name, coefficient = coefsCV, stringsAsFactors = FALSE ) |> arrange(gene.name) |> knitr::kable() ## ----accuracy, echo=FALSE, eval=!is.null(brca)-------------------------------- resp <- predict(fitted, s = "lambda.min", newx = xdata, type = "class") flog.info("Misclassified (%d)", sum(ydata != resp)) flog.info( " * False primary solid tumour: %d", sum(resp != ydata & resp == "Primary Solid Tumor") ) flog.info( " * False normal : %d", sum(resp != ydata & resp == "Solid Tissue Normal") ) ## ----predict, echo=FALSE, warning=FALSE, eval=!is.null(brca)------------------ response <- predict(fitted, s = "lambda.min", newx = xdata, type = "response") qplot(response, bins = 100) ## ----roc, echo=FALSE, eval=!is.null(brca)------------------------------------- rocObj <- pROC::roc(ydata, as.vector(response)) data.frame(TPR = rocObj$sensitivities, FPR = 1 - rocObj$specificities) |> ggplot() + geom_line(aes(FPR, TPR), color = 2, size = 1, alpha = 0.7) + labs( title = sprintf("ROC curve (AUC = %f)", pROC::auc(rocObj)), x = "False Positive Rate (1-Specificity)", y = "True Positive Rate (Sensitivity)" ) ## ----sessionInfo-------------------------------------------------------------- sessionInfo()