
compEpiTools

Mattia Pelizzola, Kamal Kishore

October 29, 2024

Contents

1 Overview 1

2 Counting reads in GRanges 1

3 Annotation of genomic regions 4

4 Functional annotation 5

5 Visualization 6

6 Session Information 9

1 Overview

In this document you can find a brief tutorial on the compEpiTools package, a toolkit for the integrative
analysis of epigenomics data, which can be complemented with the methylPipe package to include support
on DNA methylation data. compEpiTools offers multiple functionalities covering five main areas: Count-
ing reads in genomic regions, Annotation of genomic regions, Functional annotation, Visualization, and
Other (see ?compEpiTools at the R prompt for a brief overview). Many of these methods and functions
concern topics of interest in epigenomics, including: identification of enhancer and matching with puta-
tive target regions, indentification of long non coding RNAs based on chromatin features, computation of
PolII stalling index, determination of promoter CpG content etc. Finally, functionalities are avaliable to
integrate and display heterogenous data-types across multiple genomic regions.

2 Counting reads in GRanges

These are mostly GRanges methods facilitating several common operations concerning counting in ge-
nomic regions aligned reads stored in BAM files. In this example a small BAM file is used to compute the
base-level coverage using GRbaseCoverage. Next the count of reads is determined for a whole genomic
region (GRcoverage) and dividing it in 5 equally sized bins (GRcoverageInbins). Finally the summit,
i.e. the position of maximum coverage is identified and highlighted in the plot of base-level coverage for
one of these regions.

library(compEpiTools)

require(TxDb.Mmusculus.UCSC.mm9.knownGene)

require(org.Mm.eg.db)

txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene

1

bampath <- system.file("extdata", "ex1.bam", package="Rsamtools")

ir <- IRanges(start=c(1000, 100), end=c(2000, 1000))

gr <- GRanges(seqnames=Rle(c('seq1','seq2')), ranges=ir)

res <- GRbaseCoverage(Object=gr, bam=bampath)

Warning in applyPileups(PileupFiles(bam), FUN = function(x) x, param = param):

’applyPileups’ is deprecated.

Use ’pileup’ instead.

See help("Deprecated")

GRcoverage(Object=gr, bam=bampath, Nnorm=FALSE, Snorm=FALSE)[1]

Warning in applyPileups(PileupFiles(bam), FUN = function(x) sum(x$seq), :

’applyPileups’ is deprecated.

Use ’pileup’ instead.

See help("Deprecated")

[1] 20359

GRcoverageInbins(Object=gr, bam=bampath, Nnorm=FALSE, Snorm=FALSE, Nbins=5)[1,]

Warning in applyPileups(PileupFiles(bam), FUN = function(x) x, param = param):

’applyPileups’ is deprecated.

Use ’pileup’ instead.

See help("Deprecated")

[1] 8148 7969 4242 0 0

summit <- GRcoverageSummit(Object=gr, bam=bampath)

Warning in applyPileups(PileupFiles(bam), FUN = function(x) x, param = param):

’applyPileups’ is deprecated.

Use ’pileup’ instead.

See help("Deprecated")

plot(res[[1]], type='l', xlab='bp', ylab='reads count')

abline(v=start(summit[1])-start(gr[1])+1, lty=2, lwd=2)

2

0 200 400 600 800 1000

0
10

20
30

40
50

60

bp

re
ad

s
co

un
t

Apart from these general functionalities, two specific applications of interest in epigenetic are the
determination of ChIP-seq enrichment and of the PolII stalling index.

In (epi)genomics ChIP-seq is an experimental method to identify the genomic regions which are bound
by a DNA binding protein (if any), such as transcription factor or an histone mark. Such experiments
are typically conducted comparing a sample in which an antibody specific for the target protein was used
to enrich for the bound genomic DNA (ChIP), which is then compared to a control sample where the
antibody was not used (input). Comparing the signal in the ChIP and input samples allows identifying
regions of significant enrichment, the so called ChIP-seq peaks. The peaks can also be quantitatively
scored to give a measure to the binding intensity of the factor of interest. The GRenrichment method can
be used to determine this enrichment. First the number of reads in the ChIP sample within the peak
is determined and normalized by the total number of reads aligned in the BAM file (ChIPw), then the
same is done for the input sample (inputw). Finally the log2(ChIPw - inputw) is determined which was
shown to be approximatively linearly correalated to the log of the qPCR enrichment, typically used for
validation.

The PolII stalling index is a measure that is commonly determined to estimate the degree of stalling
of the Polymeras II in the region around the Transcription Start Sites (TSS), which is somehow related to
the elongation rate, the speed at which the PolII is actively elongating and transcribing the open reading
frame. The stalling index is determined as the ratio of the PolII ChIP-seq signal in the TSS region
compared to the gene body, and can be determined using the stallingIndex function and is typically
visualized with cumulative plot generated by the plotStallingIndex function.

3

3 Annotation of genomic regions

These methods can be used to assign to genomic ranges annotations concerning gene annotation and
user-defined databases. Specifically, the TSS and distanceFromTSS methods can be used to determine
the Transcription Start Sites positions for all transcript in a TranscriptDb database and to compute the
distance between a set of genomic regions and the most proximal TSS. The GRangesInPromoters is a
convenience wrapper to subset a GRanges object keeping only ranges overlapping (or not) with gene
promoter regions. All these methods plus GRmidpoint are used by GRannotateSimple to partition a set
of genomic ranges into those overlapping with promoters, intragenic and intergenic regions.

Apart from genes and promoters, numerous other genomic annotation resources are available for
example in the UCSC table browser. These or other user-defined regions of interest, together with genes
and promoter annotations can be used with the GRannotate method to obtain the complete annotation
of a set of genomic ranges. This is illustrated in the following example, where CpG Islands (CGIs) are
considered in addition to genes and promoters. In the output each genomic range is put in the context
of the nearest TSS (’nearest’ columns), the specific location in which it falls (’location’ columns) and the
overlap with CGIs:

TSSpos <- TSS(txdb)

gr <- TSSpos[1:5]

start(gr) <- start(gr) - 1000

end(gr) <- end(gr) - 600

mcols(gr) <- NULL

retrieving CGI mm9 islands from UCSC annotation tables

cgipath <- system.file("extdata", "CGIgr_mm9.Rdata", package="compEpiTools")

load(cgipath)

res <- GRannotate(Object=GRmidpoint(gr), txdb=txdb, EG2GS=org.Mm.eg.db,

upstream=2000, downstream=1000, userAnn=GRangesList(CGI=CGIgr_mm9))

show(res)

GRanges object with 5 ranges and 9 metadata columns:

seqnames ranges strand | nearest_tx_name distance_fromTSS

<Rle> <IRanges> <Rle> | <character> <integer>

18777 chr1 4797174 + | uc007afg.1 799

18777 chr1 4797174 + | uc007afg.1 799

21399 chr1 4846975 + | uc007afi.2 799

21399 chr1 4846975 + | uc007afi.2 799

21399 chr1 4847609 + | uc007afi.2 165

nearest_gene_id nearest_gene_symbol location

<character> <character> <character>

18777 18777 Lypla1 promoter;promoter

18777 18777 Lypla1 promoter;promoter

21399 21399 Tcea1 promoter;promoter;pr..

21399 21399 Tcea1 promoter;promoter;pr..

21399 21399 Tcea1 promoter;promoter;pr..

location_tx_id location_gene_id location_gene_symbol

<character> <character> <character>

18777 uc007afg.1;uc007afh.1 18777;18777 Lypla1;Lypla1

18777 uc007afg.1;uc007afh.1 18777;18777 Lypla1;Lypla1

21399 uc007afi.2;uc011wht... 21399;21399;21399 Tcea1;Tcea1;Tcea1

21399 uc007afi.2;uc011wht... 21399;21399;21399 Tcea1;Tcea1;Tcea1

4

21399 uc007afi.2;uc011wht... 21399;21399;21399 Tcea1;Tcea1;Tcea1

CGI

<numeric>

18777 0

18777 0

21399 0

21399 0

21399 1

seqinfo: 35 sequences (1 circular) from mm9 genome

The makeGtfFromDb method can be used to export a gene or transcript level GTF file to be used with
standard aligners, such as TopHat or reads counting tools, such as the one available in HTSeq, in order
to be consistent with analyses performed within R and Bioconductor.

4 Functional annotation

A number of functions and methods is available to define epigenetically relevant functional annotations.
The enhancers allows pointing to putative enhancers based on H3K4me1 (thus pointing to enhancers
which could be either active or poised) or H3K27ac (thus pointing to active enhancers) marks. To this
purpose, distal peaks of these marks laying outside gene promoters are identified, and required to not
overlap with CpG Islands to avoid peaks matching to potentially unannotated promoter regions.

Using the matchEnhancers it is possible to match enhancers with putative targets sites. Target sites
could either be TSS or transcription factor binding sites localized at the level of promoters. Constraints
are given based on a minimum or maximum distance between the enhancer and the target site. At the
same time no additional TSS have to be present in between the enhancer and the putative target site
(identification of ’direct’ enhancers). This does not apply if those TSS belong to isoforms of the same
gene. This method returns: (i) a set of reference regions without any interacting direct enhancers, (ii) a
set of enhancers sites having putative taget regions, and (iii) those of putative target regions under control
of enhancer sites. Lists (ii) and (iii) are ordered so that they can be immediately matched. Finally, if
TF binding is provided, these two lists will be further divided considering only TF-bound TSS (target
regions) which are bound by to enhancer bound from the same TF or not. This could set the foundation
for further explorative analyses on nextworks of enhancers and target regions, possibly as a function of
the binding of a TF.

topGOres and simplifyGOterms are convenience functions to deal to GeneOntology enrichment anal-
yses. In particular the latter can be used to keep only the most informative GO terms. This is based
on the fact that GeneOntology is composed of three different ontologies (Biological Processes, Molecular
Functions and Cellular Components). Within each ontology, a set of GO terms describing those categories
are available, together with the relationships linking them. Terms specifying more precisely a biological
category are called children (e.g. induction of apopotosis) of more generic parent terms (e.g. apopotosis).
Most informative GO terms to keep are defined here as those terms for which an enriched children term
mapping to a very similar set of genes has not been also identified. If that happens, the children term
is believed to contain most of the information, and typically better specifies the enrichmed GO category,
comprared to the more general, less specific, parent term which are thus discarded.

findLncRNA is a function to point to putative intergenic long non-coding RNAs (lncRNAs). These
are typically identifed thanks to their epigenetic signatures, characteristic of transcriptional units unre-
lated from gene-coding ones, associated to known genes. For simplicity, this function can only point to
lncRNAs which are distal from gene transcriptional units, to avoid False Positives due to overlap with
coding transcriptional units. While the detection is mostly based on H3K4me3 and H3K4me1 peaks,

5

additional marks and RNA-seq data can be used to have a more robust lncRNAs identification. See the
documentation of the findLncRNA function for details.

getPromoterClass can be used to classify promoters according to their CpG content. In fact, it has
been show that promoters with significantly different CpG content can be differently responsive to the
presence/absence or even to the level of epigenetic marks such as DNA-methylation (Koga et al, Genome
Research 2009).

5 Visualization

heatmapData and the associated heatmapPlot are very flexible functions that can be used with a range of
data types to associate counts for multiple data or annotation tracks to genomic regions of interst (ROIs),
and suqsequently visualizing similarites in those patterns. Supported data types range from BAM files,
GRanges objects, GRanges metadata, putative methylation sites and their associated absolute and relative
methylation level. All these data types are highly relevant for epigenomics integrative analyses and can
include but they are not limited to: base-resolution or low-resolution DNA methylation data, histone
marks, transcription factor binding, RNA-seq expression, which can be freely combined (data tracks).
Importantly, predefined or user-defined genomic annotation(s) (annotation tracks) could be overlayed to
further stratify the patterns emerging from the data tracks.

The counts associated to each given data track can be visualized using heatmaps, clustering regions
with similar patterns over all (or a subset) of the provided data and annotation tracks (easily dozens of
them, covering hundreads or thousands of genomic regions), together with the underlying gene annotation
on the forward and reverse strand. ROIs can be potentially divided in a number of bins to provide higher
resolution and information about patterns of the data within those regions.

BAM files can be provided to count reads in ROIs; these files could countain any kind of high-
throughput sequencing data (including histone marks or transcription factor binding sites) in the case
one wants to focus to the density of the reads on the genome, independently from the identification of
significantly enriched/scoring regions. On the other hand GRanges can be provided to pass for example
ChIP-seq peaks, or MeDIP-seq methylated regions, focusing on presence/absence of a given mark in the
ROIs. The mcols of GRanges having th esame length of the ROIs could be also pre-populated by the
user and used directly to fill in the relavant information of a given data track. DNA methylation relevant
data could be provided using GElist or GEcollection object of the methylPipe package. All these data
types can be freely combined in the input list of the heatmapPlot function.

Importantly, the colorscale in the heatmap can otionally be set to display the significane of the data
associated with any track in each genomic region. In the following example two very simple heatmaps
are drawn, reporting putative transcription factor binding sites (actually TSS proximal regions) in the
context of gene annotation (introns and exons are reported with dark and light red in the forward and
reverse strand, respectively). In the following heatmap the same is displayed according to the p-value for
each peak, where regions associated to high p-values are dimmed to a less intense colour.

gr <- TSSpos[1:50]

start(gr) <- start(gr) - 1000

end(gr) <- end(gr) - 600

extgr <- GRanges(seqnames(gr), ranges=IRanges(start(gr) - 1000, end(gr) + 1000))

data <- heatmapData(grl=list(ChIPseq=gr), refgr=extgr, type='gr', nbins=20, txdb=txdb)

[1] "ChIPseq"

pvalues <- c(runif(20,1e-20,1e-8), runif(15,1e-4,1e-2), runif(15,0.5,1))

pvalues <- cbind(pvalues, rep(0, 50), rep(0, 50))

6

rownames(data[[1]][[1]]) <- paste(1:50, signif(pvalues[,1],1), sep=' # ')

heatmapPlot(matList=data[[1]], clusterInds=1:3)

0 0.4 0.8

Value

Color Key

7

heatmapPlot(matList=data[[1]], sigMat=pvalues, clusterInds=1:3)

0 100 250

Value

Color Key

8

6 Session Information

sessionInfo()

R version 4.4.1 (2024-06-14)

Platform: x86_64-pc-linux-gnu

Running under: Ubuntu 24.04.1 LTS

##

Matrix products: default

BLAS: /home/biocbuild/bbs-3.20-bioc/R/lib/libRblas.so

LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0

##

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_GB LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

##

time zone: America/New_York

tzcode source: system (glibc)

##

attached base packages:

[1] stats4 stats graphics grDevices utils datasets

[7] methods base

##

other attached packages:

[1] org.Mm.eg.db_3.20.0

[2] TxDb.Mmusculus.UCSC.mm9.knownGene_3.2.2

[3] GenomicFeatures_1.58.0

[4] compEpiTools_1.40.0

[5] GenomicRanges_1.58.0

[6] GenomeInfoDb_1.42.0

[7] topGO_2.58.0

[8] SparseM_1.84-2

[9] GO.db_3.20.0

[10] AnnotationDbi_1.68.0

[11] IRanges_2.40.0

[12] S4Vectors_0.44.0

[13] Biobase_2.66.0

[14] graph_1.84.0

[15] BiocGenerics_0.52.0

##

loaded via a namespace (and not attached):

[1] RColorBrewer_1.1-3 rstudioapi_0.17.1

[3] jsonlite_1.8.9 magrittr_2.0.3

[5] rmarkdown_2.28 BiocIO_1.16.0

[7] zlibbioc_1.52.0 vctrs_0.6.5

9

[9] memoise_2.0.1 Rsamtools_2.22.0

[11] RCurl_1.98-1.16 base64enc_0.1-3

[13] htmltools_0.5.8.1 S4Arrays_1.6.0

[15] progress_1.2.3 curl_5.2.3

[17] SparseArray_1.6.0 Formula_1.2-5

[19] KernSmooth_2.23-24 htmlwidgets_1.6.4

[21] Gviz_1.50.0 httr2_1.0.5

[23] cachem_1.1.0 GenomicAlignments_1.42.0

[25] lifecycle_1.0.4 pkgconfig_2.0.3

[27] Matrix_1.7-1 R6_2.5.1

[29] fastmap_1.2.0 GenomeInfoDbData_1.2.13

[31] MatrixGenerics_1.18.0 digest_0.6.37

[33] colorspace_2.1-1 Hmisc_5.2-0

[35] RSQLite_2.3.7 filelock_1.0.3

[37] fansi_1.0.6 httr_1.4.7

[39] abind_1.4-8 compiler_4.4.1

[41] bit64_4.5.2 marray_1.84.0

[43] htmlTable_2.4.3 backports_1.5.0

[45] BiocParallel_1.40.0 DBI_1.2.3

[47] highr_0.11 methylPipe_1.40.0

[49] gplots_3.2.0 biomaRt_2.62.0

[51] rappdirs_0.3.3 DelayedArray_0.32.0

[53] rjson_0.2.23 gtools_3.9.5

[55] caTools_1.18.3 tools_4.4.1

[57] foreign_0.8-87 nnet_7.3-19

[59] glue_1.8.0 restfulr_0.0.15

[61] grid_4.4.1 checkmate_2.3.2

[63] cluster_2.1.6 generics_0.1.3

[65] gtable_0.3.6 BSgenome_1.74.0

[67] ensembldb_2.30.0 data.table_1.16.2

[69] hms_1.1.3 xml2_1.3.6

[71] utf8_1.2.4 XVector_0.46.0

[73] pillar_1.9.0 stringr_1.5.1

[75] limma_3.62.0 dplyr_1.1.4

[77] BiocFileCache_2.14.0 lattice_0.22-6

[79] deldir_2.0-4 rtracklayer_1.66.0

[81] bit_4.5.0 biovizBase_1.54.0

[83] tidyselect_1.2.1 Biostrings_2.74.0

[85] knitr_1.48 gridExtra_2.3

[87] ProtGenerics_1.38.0 SummarizedExperiment_1.36.0

[89] xfun_0.48 statmod_1.5.0

[91] matrixStats_1.4.1 stringi_1.8.4

[93] UCSC.utils_1.2.0 lazyeval_0.2.2

[95] yaml_2.3.10 evaluate_1.0.1

[97] codetools_0.2-20 interp_1.1-6

[99] tibble_3.2.1 cli_3.6.3

[101] rpart_4.1.23 munsell_0.5.1

[103] Rcpp_1.0.13 dichromat_2.0-0.1

[105] dbplyr_2.5.0 png_0.1-8

10

[107] XML_3.99-0.17 parallel_4.4.1

[109] ggplot2_3.5.1 blob_1.2.4

[111] prettyunits_1.2.0 jpeg_0.1-10

[113] latticeExtra_0.6-30 AnnotationFilter_1.30.0

[115] bitops_1.0-9 VariantAnnotation_1.52.0

[117] scales_1.3.0 crayon_1.5.3

[119] rlang_1.1.4 KEGGREST_1.46.0

11

	Overview
	Counting reads in GRanges
	Annotation of genomic regions
	Functional annotation
	Visualization
	Session Information

