
An Introduction to VariantTools

Michael Lawrence, Jeremiah Degenhardt

October 29, 2024

Contents
1 Introduction 2

2 Calling single-sample variants 2
2.1 Basic usage . 2
2.2 Step by step . 3
2.3 Diagnosing the filters . 4
2.4 Extending and customizing the workflow . 6

3 Comparing variant sets across samples 6
3.1 Calling sample-specific variants . 6

4 Exporting the calls as VCF 7

5 Finding Wildtype and No-call Regions 7

1

1 Introduction
This vignette outlines the basic usages of the VariantToolspackage and the general workflow for loading data, calling
single sample variants and tumor-specific somatic mutations or other sample-specific variant types (e.g., RNA editing).
Most of the functions operate on alignments (BAM files) or datasets of called variants. The user is expected to have
already aligned the reads with a separate tool, e.g., GSNAP via gmapR.

2 Calling single-sample variants

2.1 Basic usage
For our example, we take paired-end RNA-seq alignments from two lung cancer cell lines from the same individual.
H1993 is derived from a metastatis and H2073 is derived from the primary tumor.

Below, we call variants from a region around the p53 gene:

> library(VariantTools)
> bams <- LungCancerLines::LungCancerBamFiles()
> bam <- bams$H1993
> if (requireNamespace("gmapR", quietly=TRUE)) {
+ p53 <- gmapR:::exonsOnTP53Genome("TP53")
+ tally.param <- TallyVariantsParam(gmapR::TP53Genome(),
+ high_base_quality = 23L,
+ which = range(p53) + 5e4,
+ indels = TRUE, read_length = 75L)
+ called.variants <- callVariants(bam, tally.param)
+ } else {
+ data(vignette)
+ called.variants <- callVariants(tallies_H1993)
+ }

In the above, we load the genome corresponding to the human p53 gene region and the H1993 BAM file (stripped down
to the same region). We pass the BAM, genome, read length and quality cutoff to the callVariants workhorse.
The read length is not strictly required, but it is necessary for one of the QA filters. The value given for the high base
quality cutoff is appropriate for Sanger and Illumina 1.8 or above. By default, the high quality counts are used by the
likelihood ratio test during calling.

The returned called_variants is a variant GRanges, in the same form as that returned by bam_tally in the
gmapR package. callVariants uses bam_tally internally to generate the per-nucleotide counts (pileup) from
the BAM file. Note that gmapR is only supported on UNIX-alikes (Linux, Mac OS X), so we load the precomputed
tallies on other platforms. The result is then filtered to generate the variant calls. The VCF class holds similar
information; however, we favor the simple tally GRanges, because it has a separate record for each ALT, at each
position. VCF, the class and the file format, has a single record for a position, collapsing over multiple ALT alleles,
and this is much less convenient for our purposes.

We can post-filter the variants for those that are clustered too closely on the genome:

> pf.variants <- postFilterVariants(called.variants)

We can subset the variants by those in an actual p53 exon (not an intron):

> subsetByOverlaps(called.variants, p53, ignore.strand = TRUE)

VRanges object with 3 ranges and 17 metadata columns:
seqnames ranges strand ref alt

<Rle> <IRanges> <Rle> <character> <characterOrRle>

2

[1] TP53 1012459 * G C
[2] TP53 1013114 * T C
[3] TP53 1014376 * G C

totalDepth refDepth altDepth sampleNames
<integerOrRle> <integerOrRle> <integerOrRle> <factorOrRle>

[1] 8 0 8 <NA>
[2] 4 0 4 <NA>
[3] 4 0 4 <NA>

softFilterMatrix | n.read.pos n.read.pos.ref raw.count.total
<matrix> | <integer> <integer> <integer>

[1] | 8 0 8
[2] | 4 0 4
[3] | 3 0 4

count.plus count.plus.ref count.minus count.minus.ref
<integer> <integer> <integer> <integer>

[1] 6 0 2 0
[2] 0 0 4 0
[3] 1 0 3 0

count.del.plus count.del.minus read.pos.mean read.pos.mean.ref
<integer> <integer> <numeric> <numeric>

[1] 0 0 64.125 NaN
[2] 0 0 49.750 NaN
[3] 0 0 31.500 NaN

read.pos.var read.pos.var.ref mdfne mdfne.ref count.high.nm
<numeric> <numeric> <numeric> <numeric> <integer>

[1] 990.984 NA 17 NA 8
[2] 2435.938 NA 17 NA 4
[3] 1363.750 NA 14 NA 4

count.high.nm.ref
<integer>

[1] 0
[2] 0
[3] 0

seqinfo: 1 sequence from TP53_demo_3.2.2 genome
hardFilters(4): nonRef nonNRef readCount likelihoodRatio

The next section goes into further detail on the process, including the specific filtering rules applied, and how one
might, for example, tweak the parameters to avoid calling low-coverage variants, like the one above.

2.2 Step by step
The callVariants method for BAM files, introduced above, is a convenience wrapper that delegates to several
low-level functions to perform each step of the variant calling process: generating the tallies, basic QA filtering and
the actual variant calling. Calling these functions directly affords the user more control over the process and provides
access to intermediate results, which is useful e.g. for diagnostics and for caching results. The workflow consists of
three function calls that rely on argument defaults to achieve the same result as our call to callVariants above.
Please see their man pages for the arguments available for customization.

The first step is to tally the variants from the BAM file. By default, this will return observed differences from the
reference, excluding N calls and only counting reads above 13 in mapping quality (MAPQ) score. There are three read
position bins: the first 10 bases, the final 10 bases, and the stretch between them (these will be used in the QA step).

3

> if (requireNamespace("gmapR", quietly=TRUE)) {
+ tallies_H1993 <- tallyVariants(bam, tally.param)
+ }

Unless one is running a variant caller in a routine fashion over familiar types of data, we highly recommend
performing detailed QC of the tally results. VariantTools provides several QA filters that aim to expose artifacts,
especially those generated during alignment. These filters are not designed for filtering during actual calling; rather,
they are meant for annotating the variants during exploratory analysis. The filters include a check on the median
distance of alt calls from their nearest end of the read (default passing cutoff >= 10), as well as a Fisher Exact Test on
the per-strand counts vs. reference for strand bias (p-value cutoff: 0.001). The intent is to ensure that the data are not
due to strand-specific nor read position-specific artifacts.

The qaVariants function will soft filter the variants via softFilter. No variants are removed; the filter
results are added to the softFilterMatrix component of the object.

> qa.variants <- qaVariants(tallies_H1993)
> summary(softFilterMatrix(qa.variants))

<initial> mdfne fisherStrand <final>
88 16 83 11

The final step is to actually call the variants. The callVariants function uses a binomial likelihood ratio test
for this purpose. The ratio is P (D|p = plower)/P (D|p = perror), where plower = 0.2 is the assumed lowest variant
frequency and perror = 0.001 is the assumed error rate in the sequencing (default: 0.001).

> called.variants <- callVariants(qa.variants)

The callVariants function applies an additional set of filters after the actual variant calling. These are known
as “post” filters and consider the putative variant calls as a set, independent of the calling algorithm. Currently, there
is only one post filter by default, and it discards variants that are clumped together along the chromosome, as these
often result from mapping difficulties.

2.3 Diagnosing the filters
The calls to qaVariants and callVariants are essentially filtering the tallies, so it is important to know, es-
pecially when faced with a new dataset, the effect of each filter and the effect of the individual parameters on each
filter.

The filters are implemented as modules and are stored in a FilterRules object from the IRanges package. We can
create those filters directly and rely on some FilterRules utilities to diagnose the filtering process.

Here we construct the FilterRules that implements the qaVariants function. Again, we rely on the argument
defaults to generate the same answer.

> qa.filters <- VariantQAFilters()

We can now ask for a summary of the filtering process, which gives the number of variants that pass each filter,
separately and then combined:

> summary(qa.filters, tallies_H1993)

<initial> mdfne fisherStrand <final>
88 16 83 11

Now we retrieve only the variants that pass the filters:

> qa.variants <- subsetByFilter(tallies_H1993, qa.filters)

4

We could do the same, except modify a filter parameter, such as the p-value cutoff for the Fisher Exact Test for
strand bias:

> qa.filters.custom <- VariantQAFilters(fisher.strand.p.value = 1e-4)
> summary(qa.filters.custom, tallies_H1993)

<initial> mdfne fisherStrand <final>
88 16 83 11

To get a glance at the additional variants we are discarding compared to the previous cutoff, we can subset the filter
sets down to the Fisher strand filter, evaluate the old and new filter, and compare the results:

> fs.original <- eval(qa.filters["fisherStrand"], tallies_H1993)
> fs.custom <- eval(qa.filters.custom["fisherStrand"], tallies_H1993)
> tallies_H1993[fs.original != fs.custom]

VRanges object with 0 ranges and 17 metadata columns:
seqnames ranges strand ref alt

<Rle> <IRanges> <Rle> <character> <characterOrRle>
totalDepth refDepth altDepth sampleNames

<integerOrRle> <integerOrRle> <integerOrRle> <factorOrRle>
softFilterMatrix | n.read.pos n.read.pos.ref raw.count.total

<matrix> | <integer> <integer> <integer>
count.plus count.plus.ref count.minus count.minus.ref count.del.plus
<integer> <integer> <integer> <integer> <integer>

count.del.minus read.pos.mean read.pos.mean.ref read.pos.var
<integer> <numeric> <numeric> <numeric>

read.pos.var.ref mdfne mdfne.ref count.high.nm count.high.nm.ref
<numeric> <numeric> <numeric> <integer> <integer>

seqinfo: 1 sequence from TP53_demo_3.2.2 genome
hardFilters: NULL

Below, we demonstrate how one might add a mask to e.g. filter out variants in low complexity regions, where
mapping errors tend to dominate:

> if (requireNamespace("gmapR", quietly=TRUE)) {
+ tally.param@mask <- GRanges("TP53", IRanges(1010000, width=10000))
+ tallies_masked <- tallyVariants(bam, tally.param)
+ }

We can also diagnose the filters for calling variants after basic QA checks.

> calling.filters <- VariantCallingFilters()
> summary(calling.filters, qa.variants)

<initial> nonRef nonNRef readCount
11 11 11 3

likelihoodRatio <final>
11 3

Check how the post filter would perform prior to variant calling:

> post.filters <- VariantPostFilters()
> summary(post.filters, qa.variants)

5

<initial> avgNborCount <final>
11 11 11

What about if we preserved the ones we have already called?

> post.filters <- VariantPostFilters(whitelist = called.variants)
> summary(post.filters, qa.variants)

<initial> avgNborCount <final>
11 11 11

2.4 Extending and customizing the workflow
Since the built-in filters are implemented using FilterRules, it is easy to mix and match different filters, including
those implemented externally to the VariantTools package. This is the primary means of extending and customizing
the variant calling workflow.

3 Comparing variant sets across samples
So far, we have called variants for the metastatic H1993 sample. We leave the processing of the primary tumor H2073
sample as an exercise to the reader and instead turn our attention to detecting the variants that are specific to the
metastatic sample, as compared to the primary tumor.

3.1 Calling sample-specific variants
The function callSampleSpecificVariants takes the case (e.g., tumor) sample and control (e.g., matched
normal) sample as input. In our case, we are comparing the metastatic line (H1993) to the primary tumor line (H2073)
from the same patient, a smoker. To avoid inconsistencies, it is recommended to pass BAM files as input, for which
tallies are automatically generated, subjected to QA, and called as variants vs. reference, prior to determining the
sample-specific variants.

Here, we find the somatic mutations from a matched tumor/normal pair. Since we are starting from BAM files, we
have to provide tally.param for the tally step.

> if (requireNamespace("gmapR", quietly=TRUE)) {
+ tally.param@bamTallyParam@indels <- FALSE
+ somatic <- callSampleSpecificVariants(bams$H1993, bams$H2073,
+ tally.param)
+ } else {
+ somatic <- callSampleSpecificVariants(called.variants, tallies_H2073,
+ coverage_H2073)
+ }

This can be time-consuming for the entire genome, since the tallies need to be computed. To avoid repeated computa-
tion of the tallies, the user can pass the raw tally GRanges objects instead of the BAM files. This is less safe, because
anything could have happened to those GRanges objects.

The QA and initial calling are optionally controlled by passing FilterRules objects, typically those returned by
VariantQAFilters and VariantCallingFilters, respectively. For controlling the final step, determining
the sample-specific variants, one may pass filter parameters directly to callSampleSpecificVariants. Here
is an example of customizing some parameters.

> calling.filters <- VariantCallingFilters(read.count = 3L)
> if (requireNamespace("gmapR", quietly=TRUE)) {

6

+ somatic <- callSampleSpecificVariants(bams$H1993, bams$H2073, tally.param,
+ calling.filters = calling.filters,
+ power = 0.9, p.value = 0.001)
+ } else {
+ called.variants <- callVariants(tallies_H1993, calling.filters)
+ somatic <- callSampleSpecificVariants(called.variants, tallies_H2073,
+ coverage_H2073,
+ power = 0.9, p.value = 0.001)
+ }

4 Exporting the calls as VCF
VCF is a common file format for communicating variants. To export our variants to a VCF file, we first need to
coerce the GRanges to a VCF object. Then, we use writeVcf from the VariantAnnotation package to write the file
(indexing is highly recommended for large files). Note that the sample names need to be non-missing to generate
the VCF. Also, for simplicity and scalability, we typically do not want to output all of our metadata columns, so we
remove all of them here.

> sampleNames(called.variants) <- "H1993"
> mcols(called.variants) <- NULL
> vcf <- asVCF(called.variants)

> writeVcf(vcf, "H1993.vcf", index = TRUE)

5 Finding Wildtype and No-call Regions
So far, our analysis has yielded a set of positions that are likely to be variants. We have not made any claims about the
status of the positions outside of that set. For this, we need to decide, for each position, whether there was sufficient
coverage to detect a variant, if one existed. The following call carries out a power test to decide whether a region is
variant, wildtype or is unable to be called due to lack of coverage. The variants must have been called using the filters
returned by VariantCallingFilters. The algorithm depends on the filter parameter settings, so it is possible
and indeed required for the user to pass filter object used for calling the variants. This requirement is an attempt to
ensure consistency and will be made more convenient in the future. To request the calls for a particular set of positions,
one can pass a GenomicRanges (where all the ranges are of width 1) as the pos argument. When pos is specfied,
each element of the result corresponds to an element in pos.

> called.variants <- called.variants[!isIndel(called.variants)]
> pos <- c(called.variants, shift(called.variants, 3))
> wildtype <- callWildtype(bam, called.variants, VariantCallingFilters(),
+ pos = pos, power = 0.85)

The returned object is a logical vector, with TRUE for wildtype, FALSE for variant and NA for no-call. Thus, we could
calculate the fraction called as follows:

> mean(!is.na(wildtype))

[1] 0.5

Sometimes it is desirable for the wildtype calls to be returned as simple vector, with a logical value for each
position (range of width one) in bamWhich. Such a vector is returned when global = FALSE is passed to
callWildtype. This is the same as extracting the positions from the ordinary Rle return value, but it is imple-
mented more efficiently, at least for a relatively small number of positions.

7

	Introduction
	Calling single-sample variants
	Basic usage
	Step by step
	Diagnosing the filters
	Extending and customizing the workflow

	Comparing variant sets across samples
	Calling sample-specific variants

	Exporting the calls as VCF
	Finding Wildtype and No-call Regions

