
Growing phylogenetic trees with Treeline

Erik S. Wright

October 29, 2024

Contents
1 Introduction 1

2 Performance Considerations 1

3 Growing a Phylogenetic Tree 2

4 Ancestral State Reconstruction 5

5 Plotting Branch Support Values 7

6 Calculating bootstrap support values 9

7 Exporting the Tree 11

8 Session Information 11

1 Introduction
This document describes how to grow phylogenetic trees using the Treeline function in the DECIPHER package.
Treeline takes as input a set of aligned nucleotide or amino acid sequences and returns a phylogenetic tree (i.e.,
dendrogram object) as output. This vignette focuses on optimizing, balanced minimum evolution (ME), maximum
likelihood (ML), and maximum parsimony (MP) phylogenetic trees starting from sequences.

Why is the function called Treeline? The goal of Treeline is to find the best tree according to an optimality
criterion. There are often many trees near the optimum. Therefore, Treeline seeks to find a tree as close as possible
to the Treeline, analogous to how trees cannot grow above the treeline on a mountain.

Why use Treeline versus other programs? The Treeline function is designed to return an excellent phyloge-
netic tree with minimal user intervention. Many tree building programs have a large set of complex options for niche
applications. In contrast, Treeline simply builds a great tree by default. This vignette is intended to get you started
and introduce additional options/functions that might be useful.

Treeline uses multi-start optimization followed by hill-climbing to find the highest trees on the optimality land-
scape. Since Treeline is a stochastic optimizer, it optimizes many trees to prevent chance from influencing the final
result. With any luck it’ll find the Treeline!

2 Performance Considerations
Finding an optimal tree is no easy feat. Treeline systematically optimizes hundreds of candidate trees before
returning the best one. This takes time, but there are things you can do to make it go faster.

1

• Only use the sequences you need: Treeline’s runtime scales approximately quadratically with the number
of sequences. Hence, limiting the number of sequences is a worthwhile consideration. In particular, always
eliminate redundant sequences, as shown in the example below, and remove any sequences that are not necessary.

• Set a timeout: The maxTime argument specifies the (approximate) maximum number of hours you are willing to
let Treeline run. If you are concerned about the code running for too long then simply specify this argument.

• Compile with OpenMP support: Significant speed-ups can be achieved with multi-threading using OpenMP,
particularly for ML and MP methods. See the “Getting Started DECIPHERing” vignette for how to enable
OpenMP on your computer. Then you only need to set the argument processors=NULL and Treeline
will use all available processors.

• Compile for SIMD support: Treeline is configured to make use of SIMD operations, which are available
on some processors. The easiest way to enable SIMD is to add a line with “CFLAGS += -O3 -march=native”
to your ∼/.R/Makevars text file. Then, after recompiling, there may be an automatic speed-up on systems with
SIMD support. Note that enabling SIMD makes the compiled code non-portable, so the code always needs to
be compiled on the hardware being used.

• For ML, choose a model: Automatic model selection is a useful feature, but frequently this time-consuming
step can be skipped. For most modestly large sets of nucleotide sequences, the "GTR+G4" model will be
automatically selected. Typical amino acid sequences will tend to pick the "LG+G4" or "WAG+G4" models,
unless the sequences are from a particular origin (e.g., mitochondria). Pre-selecting a subset of the available
MODELS and supplying this as the model argument can save considerable time.

3 Growing a Phylogenetic Tree
Treeline takes as input a multiple sequence alignment and/or a distance matrix. All distance-based methods (in-
cluding ME) only require specification of myDistMatrix but will generate a distance matrix using DistanceMatrix
if myXStringSet is provided instead. The character-based methods (i.e., ML and MP) require a multiple sequence
alignment and will generate a distance matrix to construct the first candidate tree unless one is provided.

Multiple sequence alignments can be constructed from a set of (unaligned) sequences using AlignSeqs or related
functions. Treeline will optimize trees for amino acid (i.e., AAStringSet) or nucleotide (i.e., DNAStringSet
or RNAStringSet) sequences. Here, we are going to use a set of sequences that is included with DECIPHER.
These sequences are from the internal transcribed spacer (ITS) between the 16S and 23S ribosomal RNA genes in
several Streptomyces species.

> library(DECIPHER)
> # specify the path to your sequence file:
> fas <- "<<path to FASTA file>>"
> # OR find the example sequence file used in this tutorial:
> fas <- system.file("extdata", "Streptomyces_ITS_aligned.fas", package="DECIPHER")
> seqs <- readDNAStringSet(fas) # use readAAStringSet for amino acid sequences
> seqs # the aligned sequences

DNAStringSet object of length 88:
width seq names

[1] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTTTCCGAATGGGGAAACC supercont3.1 of S...
[2] 627 NNNNCACACCGCCCGTCA-CGTC...GGGGTTTCCGAATGGGGAAACC supercont3.1 of S...
[3] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTTTCCGAATGGGGAAACC supercont1.1 of S...
[4] 627 CGTACACACCGCCCGTCA-CGTC...GGGGTTTCCGAATGGGGAAACC supercont1.1 of S...
[5] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTTTCCGAATGGGGAAACC supercont1.1 of S...
...

[84] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTTTCCGAATGGGGAAACC gi|297189896|ref|...

2

[85] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTGTCCGAATGGGGAAACC gi|224581106|ref|...
[86] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTGTCCGAATGGGGAAACC gi|224581106|ref|...
[87] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTGTCCGAATGGGGAAACC gi|224581106|ref|...
[88] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTTTCCGAATGGGGAAACC gi|224581108|ref|...

Many of these sequences are redundant or from the same genome. We can de-replicate the sequences to accelerate
tree building:

> seqs <- unique(seqs) # remove duplicated sequences
> ns <- gsub("^.*Streptomyces(subsp\\. | sp\\. | | sp_)([^]+).*$", "\\2", names(seqs))
> names(seqs) <- ns # name by species (or any other preferred names)
> seqs <- seqs[!duplicated(ns)] # remove redundant sequences from the same species
> seqs

DNAStringSet object of length 19:
width seq names

[1] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTTTCCGAATGGGGAAACC albus
[2] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTTTCCGAATGGGGAAACC clavuligerus
[3] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTGTCCGAATGGGGAAACC ghanaensis
[4] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTTTCCGAATGGGGAAACC griseoflavus
[5] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTGTCCGAATGGGGAAACC lividans
...
[15] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTGTCCGAATGGGGAAACC cattleya
[16] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTTTCCGAATGGGGAAACC bingchenggensis
[17] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTTTCCGAATGGGGAAACC avermitilis
[18] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTGTCCGAATGGGGAAACC C
[19] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTGTCCGAATGGGGAAACC Tu6071

Now, it’s time to try our luck at finding the most likely tree. Here, we will set a stringent time limit (0.01 hours)
to make this example faster, although longer time limits (e.g., 24 hours) are advised because setting very short time
limits leaves the result partly up to luck.

Here, it is necessary to choose a method for optimizing the tree. The default method is "ME" because it is fast
and performs best on empirical datasets. For maximum parsimony, set method to "MP" and (optionally) specify a
costMatrix. For maximum likelihood, set method to "ML", which requires a model of sequence evolution. Note that
Treeline automatically selects the best model according to Akaike information criterion (by default). It is possible
to choose specific model(s) (e.g., model="GTR+G4") to limit the possible selections and test your luck with fewer
models.

Also, since Treeline is a stochastic optimizer, it is critical to always set the random number seed for repro-
ducibility. You can pick any lucky number, and if you ever wonder how much you pushed your luck, you can try
running again from a different random number seed to see how much the result came down to luck of the draw. Note
that setting a time limit, as done below with maxTime, negates the purpose of setting a seed – never set a time limit if
reproducibility is desired or you’ll have no such luck.

3

> set.seed(123) # set the random number seed
> tree <- Treeline(seqs,

method="ML",
model="GTR+G4",
reconstruct=TRUE,
maxTime=0.01)

Fitting initial tree to model:
GTR+G4 -ln(L) = 4368, AICc = 8832, BIC = 9017

Optimizing up to 1000 candidate trees:

Tree #1. -ln(L) = 4366.470 (-0.043%), 2 Climbs
Tree #2. -ln(L) = 4366.470 (0.000%), 5 Climbs, 0 Grafts of 1
Tree #3. -ln(L) = 4366.470 (0.000%), 2 Climbs, 0 Grafts of 3
Tree #4. -ln(L) = 4364.754 (-0.039%), 9 Climbs
Tree #5. -ln(L) = 4364.754 (0.000%), 9 Climbs, 0 Grafts of 2
Tree #6. -ln(L) = 4364.754 (0.000%), 3 Climbs, 0 Grafts of 1
Tree #7. -ln(L) = 4364.647 (-0.002%), 5 Climbs
Tree #8. -ln(L) = 4364.047 (-0.014%), 6 Climbs
Tree #9. -ln(L) = 4364.047 (0.000%), 8 Climbs, 0 Grafts of 2
Tree #10. -ln(L) = 4364.047 (0.000%), 5 Climbs, 0 Grafts of 2
Tree #11. -ln(L) = 4363.661 (-0.009%), 4 Climbs
Tree #12. -ln(L) = 4363.661 (0.000%), 8 Climbs, 0 Grafts of 2
Tree #13. -ln(L) = 4363.661 (0.000%), 7 Climbs, 0 Grafts of 2
Tree #14. -ln(L) = 4363.661 (0.000%), 7 Climbs, 0 Grafts of 1
Tree #15. -ln(L) = 4363.661 (0.000%), 7 Climbs, 0 Grafts of 1
Tree #16. -ln(L) = 4363.661 (0.000%), 10 Climbs, 0 Grafts of 1

Finalizing the best tree (#11):

-ln(L) = 4363.655 (~0.000%), 0 Climbs

Model parameters:
Frequency(A) = 0.174
Frequency(C) = 0.246
Frequency(G) = 0.344
Frequency(T) = 0.236
Rate A <-> C = 0.731
Rate A <-> G = 3.195
Rate A <-> T = 1.110
Rate C <-> G = 0.605
Rate C <-> T = 2.855
Rate G <-> T = 1.000
Alpha = 0.192

Time difference of 39.31 secs

> set.seed(NULL) # reset seed
> plot(tree)

0.
0

0.
5

1.
0

1.
5

2.
0

ca
ttl

ey
a

bi
ng

ch
en

gg
en

si
s

cl
av

ul
ig

er
us

pr
is

tin
ae

sp
ira

lis

co
el

ic
ol

or

liv
id

an
s

gr
is

eo
fla

vu
s

av
er

m
iti

lis

al
bu

s

sc
ab

ie
i

gh
an

ae
ns

is

S
P

B
74

S
P

B
78

M
g1 C Tu

60
71

gr
is

eu
s

S
ire

xA
A

−
E

A
A

4

Figure 1: Maximum likelihood tree showing the relationships between Streptomyces species.

4

4 Ancestral State Reconstruction
We’re in luck —since we set reconstruct to TRUE Treeline automatically predict states at each internal node on
the tree [3]. These character states can be used by the function MapCharacters to determine state transitions along
each edge of the tree. This information enables us to plot the total number of substitutions occurring along each edge.
The state transitions can be accessed along each edge by querying a new “change” attribute.

5

> new_tree <- MapCharacters(tree, labelEdges=TRUE)
> plot(new_tree, edgePar=list(p.col=NA, p.border=NA, t.col="#55CC99", t.cex=0.7))
> attr(new_tree[[1]], "change") # state changes on first branch left of (virtual) root

[1] "G168A" "G171T" "G176C" "G182C" "G184T" "G185T" "G199A" "G208C" "G214A"
[10] "G224T" "G225C" "G227C" "G229C" "G259T" "C266T" "G272T" "G274C" "G276T"
[19] "G277T" "G279T" "G280T" "G283T" "G287C" "G288T" "G302C" "G314C" "G316T"
[28] "G321T" "G324T" "G325C" "G328T" "G330A" "G338T" "G341T" "G371C" "G379A"
[37] "G385T" "G387C" "G389C" "G391C" "G394C" "G396T" "G397C" "G419A" "G440T"
[46] "G447T" "G477T" "G584C"

0.
0

0.
5

1.
0

1.
5

2.
0

48

162

23 57

ca
ttl

ey
a 28 16

bi
ng

ch
en

gg
en

si
s

4 2126 30

cl
av

ul
ig

er
us

pr
is

tin
ae

sp
ira

lis

9 2618 22
0 16

co
el

ic
ol

or

liv
id

an
s

gr
is

eo
fla

vu
s

18 310
33

9 30

av
er

m
iti

lis

al
bu

s

49 60

sc
ab

ie
i

gh
an

ae
ns

is

26 24

17 34

S
P

B
74

6 3

S
P

B
78

63

2

7 14

M
g1 C

Tu
60

71

6
41

gr
is

eu
s

S
ire

xA
A

−
E

A
A

4

Figure 2: Edges labeled with the number of state transitions.

6

5 Plotting Branch Support Values
Maybe it was just beginner’s luck, but we already have a reasonable looking starting tree! Treeline automatically
returns a variety of information about the tree that can be accessed with the attributes and attr functions:

> #attributes(tree) # view all attributes
> attr(tree, "members") # number of leaves below this (root) node

[1] 19

> attr(tree, "height") # height of the node (in this case, the midpoint root)

[1] 2.228156

> attr(tree, "state") # ancestral state reconstruction (if reconstruct=TRUE)

[1] "......CACCGCCCGTCA.CGTCACGAAAGTCGGTAACACCCGAAGCCGGTGGCCCAACCCCTTG.GGGAGGGAGCTGTCGAAGGTGGGACTGGCGATTGGGACGAAGTCGTAACAAGGTAGCCGTACCGGAAGGTGCGGCTGGATCACCTCCTTTCTAAGGAGCACGTCGGGGCGGCGGGGCGGG............GGGGGCCGGGATGCGGGCGAGTGTCGGGGAGCGGTTAGCTCATGGGTGGAACGTTGACTAGTCGGCACG...GGGGGGGGGGGGGTCAGGAGTACTGCTTCTGGGGGGCATGGAAGGG...GGGGGGGGGGGGCGGGGGGGGGGTCGGGCACGCTGTTG.GGTGTCTGAGGGGACGATCGG.....GCGCGGGGGGCGGGT.......CCGGTCCCGGTGGA.............GGGGGGGGGGTTGGGGGTG......CGTTGTTTGAGAACTGCAGAGTGGACGCGAGCATCT..GTGGCCAAGTTTTTAAGGGCGCACGGTGGATGCCTTGGCACCAGGAACCGATGAAGGACGTGGGAGGCCGCGATAGGCCCCGGGGAGGTGTCAACCGAGCTGTGATCCGGGGGTGTCCGAATGGGGAAACC"

> head(attr(tree, "siteLnLs")) # LnL for every alignment column (site)

[1] -2.014955 -1.584694 -2.014955 -2.363013 -1.933760 -2.363013

> attr(tree, "score") # best score (in this case, the -LnL)

[1] 4363.655

> attr(tree, "model") # either the specified or automatically select transition model

[1] "GTR+G4"

> attr(tree, "parameters") # the free model parameters (or NA if unoptimized)

FreqA FreqC FreqG FreqT FreqI A/G C/T A/C
0.1742025 0.2459768 0.3438470 NA NA 3.1945807 2.8548209 0.7309325

A/T C/G Indels alpha
1.1095777 0.6047221 NA 0.1916783

> attr(tree, "midpoint") # center of the edge (for plotting)

[1] 9.80127

The tree is (virtually) rooted at its midpoint by default. For maximum likelihood trees, all internal nodes include
aBayes branch support values [1]. These are given as probabilities that can be used in plotting on top of each edge.
We can also italicize the leaf labels (species names).

7

> plot(dendrapply(tree,
function(x) {

s <- attr(x, "probability") # choose "probability" (aBayes) or "support"
if (!is.null(s) && !is.na(s)) {

s <- formatC(as.numeric(s), digits=2, format="f")
attr(x, "edgetext") <- paste(s, "\n")

}
attr(x, "edgePar") <- list(p.col=NA, p.border=NA, t.col="#CC55AA", t.cex=0.7)
if (is.leaf(x))

attr(x, "nodePar") <- list(lab.font=3, pch=NA)
x

}),
horiz=TRUE,
yaxt='n')

> # add a scale bar (placed manually)
> arrows(0, 0, 0.4, 0, code=3, angle=90, len=0.05, xpd=TRUE)
> text(0.2, 0, "0.4 subs./site", pos=3, xpd=TRUE)

0.57

cattleya

0.87

bingchenggensis

0.39

1.00

clavuligerus

pristinaespiralis

0.84

1.00

1.00

coelicolor

lividans

griseoflavus

0.95

1.00

0.34

1.00

avermitilis

albus

scabiei

ghanaensis

1.00

1.00

1.00

SPB74

0.48

SPB78

1.00

Mg1

C

Tu6071

griseus

SirexAA−E

AA4

0.4 subs./site

Figure 3: Tree with aBayes probabilities at each internal node.

8

6 Calculating bootstrap support values
The aBayes probabilities are a good proxy for whether a partition in the tree is correct [2], but they are only available
for maximum likelihood trees. For the other trees we need to make our own luck by bootstrapping the alignment. The
idea behind bootstrapping is to resample columns (sites) of the alignment with replacement and determine whether
each partition was found in the original tree. Repeating this process allows us to measure the level of support for each
branch.

9

> reps <- 100 # number of bootstrap replicates
> tree1 <- Treeline(seqs, verbose=FALSE, processors=1L)
> partitions <- function(x) {

if (is.leaf(x))
return(NULL)

x0 <- paste(sort(unlist(x)), collapse=" ")
x1 <- partitions(x[[1]])
x2 <- partitions(x[[2]])
return(list(x0, x1, x2))

}
> pBar <- txtProgressBar()
> bootstraps <- vector("list", reps)
> for (i in seq_len(reps)) {

r <- sample(width(seqs)[1], replace=TRUE)
at <- IRanges(r, width=1)
seqs2 <- extractAt(seqs, at)
seqs2 <- lapply(seqs2, unlist)
seqs2 <- DNAStringSet(seqs2)

temp <- Treeline(seqs2, verbose=FALSE)
bootstraps[[i]] <- unlist(partitions(temp))
setTxtProgressBar(pBar, i/reps)

}

==

> close(pBar)

> bootstraps <- table(unlist(bootstraps))
> original <- unlist(partitions(tree1))
> hits <- bootstraps[original]
> names(hits) <- original
> w <- which(is.na(hits))
> if (length(w) > 0)

hits[w] <- 0
> hits <- round(hits/reps*100)
> labelEdges <- function(x) {

if (is.null(attributes(x)$leaf)) {
part <- paste(sort(unlist(x)), collapse=" ")
attr(x, "edgetext") <- as.character(hits[part])

}
return(x)

}
> tree2 <- dendrapply(tree1, labelEdges)
> attr(tree2, "edgetext") <- NULL
> plot(tree2, edgePar=list(t.cex=0.5), nodePar=list(lab.cex=0.7, pch=NA))

0.
00

0.
05

0.
10

0.
15

100

86

ca
ttl

ey
a

43 37

89

84

gr
is

eu
s

S
ire

xA
A

−
E

88

100
100

S
P

B
74

Tu
60

71

S
P

B
78

C

M
g1

52 54

sc
ab

ie
i

gh
an

ae
ns

is

100

36

av
er

m
iti

lis

al
bu

s

69
88

77

bi
ng

ch
en

gg
en

si
s

cl
av

ul
ig

er
us

pr
is

tin
ae

sp
ira

lis

99

gr
is

eo
fla

vu
s

co
el

ic
ol

or

liv
id

an
s

A
A

4

Figure 4: Tree with bootstrap support probabilities at each internal node.

10

7 Exporting the Tree
We’ve had a run of good luck with this tree, so we’d better save it before our luck runs out! The functions ReadDendrogram
and WriteDendrogram will import and export trees in Newick file format. If we leave the file argument blank then
it will print the output to the console for our viewing:

> WriteDendrogram(tree, file="")

(('cattleya':0.2242791,('bingchenggensis':0.09810407,(('clavuligerus':0.09472303,'pristinaespiralis':0.108589):0.01078227,((('coelicolor':1.877e-07,'lividans':0.04090717):0.06181444,'griseoflavus':0.05615156):0.02588021,((('avermitilis':0.03025673,'albus':0.06422105):0.002975515,('scabiei':0.1883947,'ghanaensis':0.2274099):0.1187227):0.04436985,(('SPB74':0.06174268,('SPB78':0.01111948,(('Mg1':0.02517061,'C':0.0307688):0.3331012,'Tu6071':0.005362671):0.005865921):0.08149532):0.09067579,('griseus':0.02858715,'SirexAA-E':0.1097128):0.07775891):0.09202041):0.05646077):0.06377729):0.0382463):0.2254828):1.210262,'AA4':2.228156);

To keep up our lucky streak, we should probably include any model parameters in the output along with the tree.
Luckily, Newick format supports square brackets (i.e., “[]”) for comments, which we can append to the end of the file
for good luck:

> params <- attr(tree, "parameters")
> cat("[", paste(names(params), params, sep="=", collapse=","), "]", sep="", append=TRUE, file="")

[FreqA=0.17420252214357,FreqC=0.245976830812824,FreqG=0.343847016948498,FreqT=NA,FreqI=NA,A/G=3.19458074996289,C/T=2.85482090190754,A/C=0.730932545766596,A/T=1.10957772397067,C/G=0.604722122711413,Indels=NA,alpha=0.191678263272596]

8 Session Information
All of the output in this vignette was produced under the following conditions:

• R version 4.4.1 (2024-06-14), x86_64-pc-linux-gnu

• Running under: Ubuntu 24.04.1 LTS

• Matrix products: default

• BLAS: /home/biocbuild/bbs-3.20-bioc/R/lib/libRblas.so

• LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0

• Base packages: base, datasets, grDevices, graphics, methods, stats, stats4, utils

• Other packages: BiocGenerics 0.52.0, Biostrings 2.74.0, DECIPHER 3.2.0, GenomeInfoDb 1.42.0,
IRanges 2.40.0, S4Vectors 0.44.0, XVector 0.46.0

• Loaded via a namespace (and not attached): DBI 1.2.3, GenomeInfoDbData 1.2.13, KernSmooth 2.23-24,
R6 2.5.1, UCSC.utils 1.2.0, compiler 4.4.1, crayon 1.5.3, httr 1.4.7, jsonlite 1.8.9, tools 4.4.1, zlibbioc 1.52.0

References
[1] Anisimova, M., Gil, M., Dufayard, J., Dessimoz, C., & Gascuel, O. Survey of branch support methods demon-

strates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst Biol., 60(5), 685-699.

[2] Ecker, N., Huchon, D., Mansour, Y., Mayrose, I., & Pupko, T. A machine-learning-based alternative to phyloge-
netic bootstrap. Bioinformatics, 40, i208-i217.

[3] Joy, J., Liang, R., McCloskey, R., Nguyen, T., & Poon, A. Ancestral Reconstruction. PLoS Comp. Biol., 12(7),
e1004763.

11

	Introduction
	Performance Considerations
	Growing a Phylogenetic Tree
	Ancestral State Reconstruction
	Plotting Branch Support Values
	Calculating bootstrap support values
	Exporting the Tree
	Session Information

