Package 'KinSwingR'

November 13, 2024

Type Package Title KinSwingR: network-based kinase activity prediction Version 1.24.0 Description KinSwingR integrates phosphosite data derived from mass-spectrometry data and kinase-substrate predictions to predict kinase activity. Several functions allow the user to build PWM models of kinase-subtrates, statistically infer PWM:substrate matches, and integrate these data to infer kinase activity. License GPL-3 **Encoding** UTF-8 LazyData true **Depends** R (>= 3.5)Imports data.table, BiocParallel, sqldf, stats, grid, grDevices biocViews Proteomics, SequenceMatching, Network RoxygenNote 6.1.0 Suggests knitr, rmarkdown VignetteBuilder knitr git_url https://git.bioconductor.org/packages/KinSwingR git_branch RELEASE_3_20 git_last_commit 9011343 git_last_commit_date 2024-10-29 **Repository** Bioconductor 3.20 Date/Publication 2024-11-12 Author Ashley J. Waardenberg [aut, cre] Maintainer Ashley J. Waardenberg <a.waardenberg@gmail.com> Contents 1 1 10000

buildPWM	2
cleanAnnotation	3
example_phosphoproteome	4
KinSwingR	5
phosphositeplus_human	5
scoreSequences	6
swing	7
viewPWM	9

Index

buildPWM

Description

Generate Position Weight Matrices (PWMs) for a table containing centered substrate peptide sequences for a list of kinases. The output of this function is to be used for scoring PWM matches to peptides via scoreSequences()

Usage

```
buildPWM(kinase_table = NULL, wild_card = "_", substrate_length = 15,
substrates_n = 10, pseudo = 0.01, remove_center = FALSE,
verbose = FALSE)
```

Arguments

kinase_table	A data.frame of substrate sequences and kinase names. Format of data must be as follows: column 1 - kinase/kinase family name/GeneID, column 2 - centered peptide sequence.	
wild_card	Letter to describe sequences that are outside of the protein after centering on the phosphosite (e.gMERSTRELCLNF). Default: "_".	
substrate_length		
	Full length of substrate sequence (default is 15). Will be trimmed automatically or report error if sequences in kinase_table are not long enough.	
substrates_n	Number of sequences used to build a PWM model. Low sequence counts will produce poor representative PWM models. Default: "10"	
pseudo	Small number to add to values for PWM log transformation to prevent log transformation of zero. Default = 0.01	
remove_center	Remove all peptide sequences with the central amino acid matching a character (e.g. "y"). Default = FALSE	
verbose	Print progress to screen. Default=FALSE	

Value

Output is a list containing two tables, "pwm" and "kinase". To access PWMs: pwms\$pwm and Table of Kinase and sequence counts: pwms\$kinase

Examples

```
## Build PWM models from phosphositeplus data with default of minimum
## of 10 substrate sequences for building a PWM model.
data(phosphositeplus_human)
##randomly sample 1000 substrates for demonstration.
set.seed(1)
sample_pwm <- phosphositeplus_human[sample(nrow(phosphositeplus_human),
1000),]</pre>
```

11

cleanAnnotation

```
pwms <- buildPWM(sample_pwm)
## Data frame of models built and number of sequences used to build each
## PWM model:
head(pwms$kinase)</pre>
```

cleanAnnotation

Function for extracting peptide sequences from multimapped or complex annotated data

Description

This function extracts unique peptide:annotation combinations from complex annotated data and formats for further analysis using KinSwingR. For instance, example input annotation may be: "A0A096MIX2lDdx17l494lRSRYRTTSSANNPN". This function will extract the peptide sequence into a second column and associate it all annotations. See vignette for more details.

Usage

```
cleanAnnotation(input_data = NULL, annotation_delimiter = "|",
  multi_protein_delimiter = ":", multi_site_delimiter = ";",
  seq_number = 4, replace = FALSE, replace_search = "X",
  replace_with = "_", verbose = FALSE)
```

Arguments

```
input_data
                  A data.frame of phosphopeptide data. Must contain 4 columns and the following
                 format must be adhered to. Column 1 - Annotation, Column 2 - centered peptide
                 sequence, Column 3 - Fold Change [-ve to +ve], Column 4 - p-value [0-1].
                 This will extract the peptide sequences from Column1 and replace all values in
                 Column2 to be used in scoreSequences(). Where peptide sequences have not
                  been extracted from the annotation, leave Column2 as NA's.
annotation_delimiter
                  The character used to delimit annotations. Default="|"
multi_protein_delimiter
                  The character used to delimit multi-protein assignments. Default=":". E.g.
                  Ddx17:Ddx2
multi_site_delimiter
                  The character used to delimit multi-site assignments. Default=";". E.g. 494;492
                 The annotation frame that contains the sequence after delimitation. E.g. The se-
seq_number
                 quence "RSRYRTTSSANNPN" is contained in the 4th annotation frame of the
                  following annotation: "A0A096MIX2lDdx17l494lRSRYRTTSSANNPN" and
                  would therefore set seq_number=4. Default=4
                 Replace a letter that describes sequences outside of the protein after centering
replace
                 on the phosphosite (e.g X in XXXMERSTRELCLNF). Use in combination with
                 replace_search and replace_with to replace amino acids. Options are "TRUE"
                 or "FALSE". Default="FALSE".
replace_search Amino Acid to search for when replacing sequences. Default="X"
                  Amino Acid to replace with when replacing sequences. Default="_"
replace_with
verbose
                 Print progress to screen. Default=FALSE
```

Value

A data.table with the peptides extracted from the annotation column

Examples

```
## Extract peptide sequences from annotation data:
data(example_phosphoproteome)
## A0A096MJ61|NA|89|PRRVRNLSAVLAART
## The following will extract all the uniquely annotated peptide
## sequences from the "annotation" column and place these in the
## "peptide" column. Where multi-mapped peptide sequences are input,
## these are placed on a new line.
##
## Here, sequences with a "X" and also replaced with a "_". This is ensure
## that PWMs are built correctly.
## Sample data for demonstration:
sample_data <- head(example_phosphoproteome)</pre>
annotated_data <- cleanAnnotation(input_data = sample_data,</pre>
                                   annotation_delimiter = "|",
                                   multi_protein_delimiter = ":",
                                   multi_site_delimiter = ";",
                                   seq_number = 4,
                                   replace = TRUE,
                                   replace_search = "X",
                                   replace_with = "_")
```

Return the annotated data with extracted peptides: head(annotated_data)

example_phosphoproteome

Example phosphoproteome.

Description

A dataset containing annotated subtrate sequences derived from XXX. See original publication for more details: Engholm-Keller & Waardenberg AJ et al.

Usage

```
example_phosphoproteome
```

Format

A data frame with 6215 rows and 4 variables:

annotation Annotation of phosphorylated peptidespeptide blank - peptides need to be extracted from annotationfc Fold Change (log2)pval P-value for fold-change.

4

KinSwingR

Description

This package provides functionality for kinase-subtrate prediction, and integration with phosphopeptide fold change and significance to assess the local connectivity (swing) of kinase-substrate networks. The final output of KinSwingR is a score that is normalised and weighted for prediction of kinase activity.

Details

Contact a.waardenberg@gmail.com for questions relating to functionality.

buildPWM function

Builds PWMs for kinases from a table of kinases and known substrate sequences.

scoreSequences function

Score kinase PWMs matches against a set of peptide sequences.

swing function

Integrates kinase PWMs matches against peptide sequences and directionality as well as significance of peptides for prediction of kinase activity.

cleanAnnotation function

Function for extracting peptides from multimapped data

phosphositeplus_human Human kinase-substrates derived from PhosphositePlus.

Description

A dataset containing human kinases and subtrate sequences. See original publication for more details: Hornbeck et al. Nucleic Acids Res. 40:D261-70, 2012

Usage

phosphositeplus_human

Format

A data frame with 11985 rows and 2 variables:

kinase human kinase gene symbol

substrate centered substrate sequence for kinase

Source

https://www.phosphosite.org/

```
scoreSequences
```

Description

Scores each input sequence for a match against all PWMs provided from buildPWM() and generates p-values for scores. The output of this function is to be used for building the swing metric, the predicted activity of kinases.

Usage

```
scoreSequences(input_data = NULL, pwm_in = NULL,
background = "random", n = 1000, force_trim = FALSE,
verbose = FALSE)
```

Arguments

input_data	A data.frame of phoshopeptide data. Must contain 4 columns and the following format must be adhered to. Column 1 - Annotation, Column 2 - centered peptide sequence, Column 3 - Fold Change [-ve to +ve], Column 4 - p-value [0-1]
pwm_in	List of PWMs created using buildPWM()
background	Option to provide a data.frame of peptides to use as background. If providing a background as a table, this must contain two columns; Column 1 - Annotation, Column 2 - centered peptide sequence. These must be centered. OR generate a random background for PWM scoring from the input list - background = random. Default: "random"
n	Number of permutations to perform for generating background. Default: "1000"
force_trim	This function will detect if a peptide sequence is of different length to the PWM models generated (provided in pwm_in) and trim the input sequences to the same length as the PWM models. If a background is provided, this will also be trimmed to the same width as the PWM models. Options are: "TRUE, FALSE". Default = FALSE
verbose	Turn verbosity on/off. To turn on, verbose=TRUE. Options are: "TRUE, FALSE". Default = FALSE

Value

A list with 3 elements: 1) PWM-substrate scores: substrate_scores\$peptide_scores, 2) PWM-substrate p-values: substrate_scores\$peptide_p 3) Background used for reproducibility: substrate_scores\$background 4) input_data is returned in the case that it was trimmed.

Examples

```
## import data
data(example_phosphoproteome)
data(phosphositeplus_human)
## clean up the annotations
## sample 100 data points for demonstration
```

swing

```
sample_data <- head(example_phosphoproteome, 100)</pre>
annotated_data <- cleanAnnotation(input_data = sample_data)</pre>
## build the PWM models:
set.seed(1234)
sample_pwm <- phosphositeplus_human[sample(nrow(phosphositeplus_human),</pre>
1000),]
pwms <- buildPWM(sample_pwm)</pre>
## score the PWM - substrate matches
## Using a "random" background, to calculate the p-value of the matches
## Using n=10 for demonstration
## set.seed for reproducibility
set.seed(1234)
substrate_scores <- scoreSequences(input_data = annotated_data,</pre>
                                     pwm_in = pwms,
                                     background = "random",
                                     n = 10)
```

swing

Swing statistic

Description

This function integrates the kinase-substrate predictions, directionality of phosphopeptide fold change and significance to assess local connectivity (swing) of kinase-substrate networks. The final score is a normalised and weighted score of predicted kinase activity. If permutations are selected, network node:edges are permutated. P-values will be calculated for both ends of the distribution of swing scores (positive and negative swing scores).

Usage

```
swing(input_data = NULL, pwm_in = NULL, pwm_scores = NULL,
    pseudo_count = 1, p_cut_pwm = 0.05, p_cut_fc = 0.05,
    permutations = 1000, return_network = FALSE, verbose = FALSE)
```

Arguments

input_data	A data.frame of phoshopeptide data. Must contain 4 columns and the following format must be adhered to. Column 1 - Annotation, Column 2 - centered peptide sequence, Column 3 - Fold Change [-ve to +ve], Column 4 - p-value [0-1]. This must be the same dataframe used in scoreSequences()
pwm_in	List of PWMs created using buildPWM()
pwm_scores	List of PWM-substrate scores created using scoreSequences()
pseudo_count	Pseudo-count acts at two levels. 1) It adds a small number to the counts to avoid zero divisions, which also 2) avoids log-zero transformations. Note that this means that pos, neg and all values in the output table include the addition of the pseudo-count. Default: "1"
p_cut_pwm	Significance level for determining a significant kinase-substrate enrichment. Default: "0.05"

p_cut_fc	Significance level for determining a significant level of Fold-change in the phosphoproteomics data. Default: "0.05"
permutations	Number of permutations to perform. This will shuffle the kinase-subtrate edges of the network n times. To not perform permutations and only generate the scores, set permutations=1 or permutations=FALSE. Default: "1000"
return_network	Option to return an interaction network for visualising in cystoscape. Default = FALSE
verbose	Turn verbosity on/off. To turn on, verbose=TRUE. Options are: "TRUE, FALSE". Default=FALSE

Value

A data.table of swing scores

Examples

```
## import data
data(example_phosphoproteome)
data(phosphositeplus_human)
## clean up the annotations
## sample 100 data points for demonstration
sample_data <- head(example_phosphoproteome, 100)
annotated_data <- cleanAnnotation(input_data = sample_data)
## build the PWM models:</pre>
```

```
set.seed(1234)
sample_pwm <- phosphositeplus_human[sample(nrow(phosphositeplus_human),
1000),]
pwms <- buildPWM(sample_pwm)</pre>
```

viewPWM

Description

View information content for each position of the PWM. Information content is modelled using Shannon's Entropy Model. The maximum information content is therefore log2(n), where n is the number of amino acids. Colors of Amino Acids are in accordance with the Lesk scheme.

Usage

```
viewPWM(pwm_in = NULL, which_pwm = NULL, fontsize = 10,
view_pwm = FALSE, pseudo = 0.01, convert_PWM = FALSE,
color_scheme = "shapely", correction_factor = NULL)
```

Arguments

pwm_in	View a PWM provided using the buildPWM. Default = NULL	
which_pwm	If pwms are input (outputs of buildPWM), a kinase name must match a name in pwms\$kinase\$kinase list of names. Default = NULL	
fontsize	Font size to use on x and y axis. Default = 10	
view_pwm	View the PWM. Default = FALSE	
pseudo	Small amount added to the PWM model, where zero's exist, to avoid log zero. $Default = 0.01$	
convert_PWM	pwm_in is a matrix of counts at position. TRUE will convert this matrix to a PWM. Default = FALSE	
color_scheme	Which color scheme to use for Amino Acid Groups. Options are "lesk" or "shapely". Default = "shapely"	
correction_factor		
	Number of sequences used to infer the PWM. This can be used where a small number of sequences were used to build the model and included as E_n in the Shannon's Entropy Model. Default = NULL	

Value

Visualisation of a motif, scaled on bits and two tables. 1) pwm: corresponding to the PWM from pwm and 2) pwm_bits: corresponding to the conversion to bits.

Examples

```
## Build PWM models from phosphositeplus data with default of minimum
## of 10 substrate sequences for building a PWM model.
data(phosphositeplus_human)
##randomly sample 1000 substrates for demonstration.
set.seed(1)
sample_pwm <- phosphositeplus_human[sample(nrow(phosphositeplus_human),
1000),]
pwms <- buildPWM(sample_pwm)</pre>
```

Data frame of models built and number of sequences used to build each

viewPWM

10

Index

* datasets
 example_phosphoproteome, 4
 phosphositeplus_human, 5

buildPWM, 2

cleanAnnotation, 3

example_phosphoproteome, 4

KinSwingR, 5
KinSwingR-package (KinSwingR), 5

phosphositeplus_human, 5

scoreSequences, 6
swing, 7

viewPWM,9