Lefser is metagenomic biomarker discovery tool that is based on
LEfSe tool and is published by
Huttenhower et al. 2011.
Lefser
is the R implementation of the LEfSe
method.
Using statistical analyses, lefser
compares microbial populations of healthy
and diseased subjects to discover differencially expressed microorganisms.
Lefser
than computes effect size, which estimates magnitude of differential
expression between the populations for each differentially expressed
microorganism. Subclasses of classes can also be assigned and used within the
analysis.
To install Bioconductor and the lefser
package, run the following
commands.
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("lefser")
Then load the lefser
package.
library(lefser)
lefser
The lefser
function can be used with a SummarizedExperiment
.
Load the zeller14
example dataset and exclude ‘adenoma’ conditions.
data(zeller14)
zeller14 <- zeller14[, zeller14$study_condition != "adenoma"]
Note. lefser
supports only two-group contrasts.
The colData
in the SummarizedExperiment
dataset contains the grouping
column study_condition
which includes the ‘control’ and ‘CRC’ groups.
table(zeller14$study_condition)
##
## CRC control
## 91 66
There can be subclasses in each group condition. In the example dataset
we include age_category
as a subclass of study_condition
which includes
‘adults’ and ‘seniors’. This variable will correspond to the blockCol
input argument.
table(zeller14$age_category)
##
## adult senior
## 91 66
We can create a contingency table for the two categorical variables.
table(zeller14$age_category, zeller14$study_condition)
##
## CRC control
## adult 45 46
## senior 46 20
We can now use the lefser
function. It provides results as a data.frame
with the names of selected microorganisms and their effect size.
res <- lefser(zeller14, groupCol = "study_condition", blockCol = "age_category")
## Warning in lefser(zeller14, groupCol = "study_condition", blockCol =
## "age_category"): Convert counts to relative abundances with 'relativeAb()'
## The outcome variable is specified as 'study_condition' and the reference category is 'CRC'.
## See `?factor` or `?relevel` to change the reference category.
head(res)
## Names
## 1 k__Bacteria|p__Fusobacteria|c__Fusobacteriia|o__Fusobacteriales|f__Fusobacteriaceae
## 2 k__Bacteria|p__Fusobacteria|c__Fusobacteriia|o__Fusobacteriales|f__Fusobacteriaceae|g__Fusobacterium
## 3 k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Porphyromonadaceae|g__Porphyromonas
## 4 k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Porphyromonadaceae|g__Porphyromonas|s__Porphyromonas_asaccharolytica|t__Porphyromonas_asaccharolytica_unclassified
## 5 k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Porphyromonadaceae|g__Porphyromonas|s__Porphyromonas_asaccharolytica
## 6 k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Peptostreptococcaceae|g__Peptostreptococcus|s__Peptostreptococcus_stomatis|t__GCF_000147675
## scores
## 1 -5.220469
## 2 -5.184039
## 3 -5.053910
## 4 -4.972276
## 5 -4.947255
## 6 -4.855756
lefserPlot
lefserPlot(res)
When using phyloseq
objects, we recommend to extract the data and create a
SummarizedExperiment
object as follows:
library(phyloseq)
##
## Attaching package: 'phyloseq'
## The following object is masked from 'package:SummarizedExperiment':
##
## distance
## The following object is masked from 'package:Biobase':
##
## sampleNames
## The following object is masked from 'package:GenomicRanges':
##
## distance
## The following object is masked from 'package:IRanges':
##
## distance
fp <- system.file(
"extdata", "study_1457_split_library_seqs_and_mapping.zip",
package = "phyloseq"
)
kostic <- suppressWarnings({
microbio_me_qiime(fp)
})
## Found biom-format file, now parsing it...
## Done parsing biom...
## Importing Sample Metdadata from mapping file...
## Merging the imported objects...
## Successfully merged, phyloseq-class created.
## Returning...
counts <- unclass(otu_table(kostic))
colData <- as(sample_data(kostic), "data.frame")
## create a SummarizedExperiment object
SummarizedExperiment(
assays = list(counts = counts), colData = colData
)
## class: SummarizedExperiment
## dim: 2505 190
## metadata(0):
## assays(1): counts
## rownames(2505): 304309 469478 ... 206906 298806
## rowData names(0):
## colnames(190): C0333.N.518126 C0333.T.518046 ... 32I9UNA9.518098
## BFJMKNMP.518102
## colData names(71): X.SampleID BarcodeSequence ... HOST_TAXID
## Description
You may also consider using makeTreeSummarizedExperimentFromPhyloseq
from the
mia
package (example not shown).
sessionInfo()
## R version 4.3.2 Patched (2023-11-13 r85521)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.3 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.18-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] phyloseq_1.46.0 lefser_1.12.1
## [3] SummarizedExperiment_1.32.0 Biobase_2.62.0
## [5] GenomicRanges_1.54.1 GenomeInfoDb_1.38.1
## [7] IRanges_2.36.0 S4Vectors_0.40.1
## [9] BiocGenerics_0.48.1 MatrixGenerics_1.14.0
## [11] matrixStats_1.1.0 BiocStyle_2.30.0
##
## loaded via a namespace (and not attached):
## [1] ade4_1.7-22 tidyselect_1.2.0 libcoin_1.0-10
## [4] dplyr_1.1.4 farver_2.1.1 Biostrings_2.70.1
## [7] bitops_1.0-7 fastmap_1.1.1 RCurl_1.98-1.13
## [10] TH.data_1.1-2 digest_0.6.33 lifecycle_1.0.4
## [13] cluster_2.1.4 survival_3.5-7 magrittr_2.0.3
## [16] compiler_4.3.2 rlang_1.1.2 sass_0.4.7
## [19] tools_4.3.2 igraph_1.5.1 utf8_1.2.4
## [22] yaml_2.3.7 data.table_1.14.8 knitr_1.45
## [25] S4Arrays_1.2.0 labeling_0.4.3 DelayedArray_0.28.0
## [28] plyr_1.8.9 multcomp_1.4-25 abind_1.4-5
## [31] withr_2.5.2 grid_4.3.2 fansi_1.0.5
## [34] multtest_2.58.0 biomformat_1.30.0 colorspace_2.1-0
## [37] Rhdf5lib_1.24.0 ggplot2_3.4.4 scales_1.2.1
## [40] iterators_1.0.14 MASS_7.3-60 cli_3.6.1
## [43] mvtnorm_1.2-3 vegan_2.6-4 rmarkdown_2.25
## [46] crayon_1.5.2 generics_0.1.3 reshape2_1.4.4
## [49] rhdf5_2.46.0 ape_5.7-1 cachem_1.0.8
## [52] stringr_1.5.1 zlibbioc_1.48.0 modeltools_0.2-23
## [55] splines_4.3.2 parallel_4.3.2 BiocManager_1.30.22
## [58] XVector_0.42.0 vctrs_0.6.4 Matrix_1.6-3
## [61] sandwich_3.0-2 jsonlite_1.8.7 bookdown_0.36
## [64] magick_2.8.1 foreach_1.5.2 jquerylib_0.1.4
## [67] glue_1.6.2 codetools_0.2-19 stringi_1.8.1
## [70] gtable_0.3.4 munsell_0.5.0 tibble_3.2.1
## [73] pillar_1.9.0 rhdf5filters_1.14.1 htmltools_0.5.7
## [76] GenomeInfoDbData_1.2.11 R6_2.5.1 evaluate_0.23
## [79] lattice_0.22-5 highr_0.10 bslib_0.6.0
## [82] Rcpp_1.0.11 permute_0.9-7 nlme_3.1-163
## [85] SparseArray_1.2.2 mgcv_1.9-0 coin_1.4-3
## [88] xfun_0.41 zoo_1.8-12 pkgconfig_2.0.3