BiocNeighbors 1.20.2
The BiocNeighbors package provides several algorithms for approximate neighbor searches:
These methods complement the exact algorithms described previously.
Again, it is straightforward to switch from one algorithm to another by simply changing the BNPARAM argument in findKNN and queryKNN.
We perform the k-nearest neighbors search with the Annoy algorithm by specifying BNPARAM=AnnoyParam().
nobs <- 10000
ndim <- 20
data <- matrix(runif(nobs*ndim), ncol=ndim)
fout <- findKNN(data, k=10, BNPARAM=AnnoyParam())
head(fout$index)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 9170 2187 3043 4787 861 2532 5533 2606 9158 4469
## [2,] 3827 4027 5679 2543 1496 8751 5169 2427 4364 5374
## [3,] 2490 6220 491 782 1402 8024 5193 241 4212 3119
## [4,] 7890 3473 6915 8848 6597 7120 4462 6592 427 2074
## [5,] 4081 4380 8101 928 1315 5265 9589 3443 1797 6275
## [6,] 8776 8308 4594 866 8936 9907 2138 3964 2636 1667
head(fout$distance)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 0.8146991 0.8668554 0.8736681 0.8850469 0.9021078 0.9033343 0.9171228
## [2,] 0.8051909 0.8937845 0.8978544 0.9111407 0.9298306 0.9401582 0.9517565
## [3,] 0.8022693 0.8939355 0.9111685 0.9647251 0.9694588 0.9939378 0.9946436
## [4,] 0.6883357 0.9274211 0.9429976 0.9458513 0.9663146 0.9871839 0.9910587
## [5,] 0.9946769 1.0624418 1.0891799 1.1080674 1.1111146 1.1336514 1.1581675
## [6,] 0.7206981 0.8502777 0.8793322 0.9103470 0.9132983 0.9172049 0.9481169
## [,8] [,9] [,10]
## [1,] 0.9353919 0.9707053 0.9714199
## [2,] 0.9609740 0.9773840 0.9798102
## [3,] 1.0049042 1.0062886 1.0068802
## [4,] 1.0054924 1.0091718 1.0177615
## [5,] 1.1589582 1.1643794 1.1648592
## [6,] 0.9489189 0.9538189 0.9592605
We can also identify the k-nearest neighbors in one dataset based on query points in another dataset.
nquery <- 1000
ndim <- 20
query <- matrix(runif(nquery*ndim), ncol=ndim)
qout <- queryKNN(data, query, k=5, BNPARAM=AnnoyParam())
head(qout$index)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 862 6302 1223 4677 5413
## [2,] 5172 732 8591 7410 3946
## [3,] 4982 4212 2830 3798 2292
## [4,] 4808 4269 3125 5776 8491
## [5,] 5411 8148 462 7649 1857
## [6,] 7683 9486 50 5077 1361
head(qout$distance)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.9219522 1.0506451 1.0899365 1.1152922 1.1193435
## [2,] 0.9985842 1.0723281 1.0783435 1.0823529 1.0984902
## [3,] 0.9523321 0.9549680 0.9740916 0.9771364 0.9997572
## [4,] 0.7610670 0.9169366 0.9436059 0.9979706 1.0366374
## [5,] 0.9318078 0.9839750 0.9871143 1.0033323 1.0038940
## [6,] 0.8195763 0.9064996 0.9649357 0.9751717 0.9966074
It is similarly easy to use the HNSW algorithm by setting BNPARAM=HnswParam().
Most of the options described for the exact methods are also applicable here. For example:
subset to identify neighbors for a subset of points.get.distance to avoid retrieving distances when unnecessary.BPPARAM to parallelize the calculations across multiple workers.BNINDEX to build the forest once for a given data set and re-use it across calls.The use of a pre-built BNINDEX is illustrated below:
pre <- buildIndex(data, BNPARAM=AnnoyParam())
out1 <- findKNN(BNINDEX=pre, k=5)
out2 <- queryKNN(BNINDEX=pre, query=query, k=2)
Both Annoy and HNSW perform searches based on the Euclidean distance by default.
Searching by Manhattan distance is done by simply setting distance="Manhattan" in AnnoyParam() or HnswParam().
Users are referred to the documentation of each function for specific details on the available arguments.
Both Annoy and HNSW generate indexing structures - a forest of trees and series of graphs, respectively -
that are saved to file when calling buildIndex().
By default, this file is located in tempdir()1 On HPC file systems, you can change TEMPDIR to a location that is more amenable to concurrent access. and will be removed when the session finishes.
AnnoyIndex_path(pre)
## [1] "/tmp/Rtmp3mVRlN/file11b4df45400394.idx"
If the index is to persist across sessions, the path of the index file can be directly specified in buildIndex.
This can be used to construct an index object directly using the relevant constructors, e.g., AnnoyIndex(), HnswIndex().
However, it becomes the responsibility of the user to clean up any temporary indexing files after calculations are complete.
sessionInfo()
## R version 4.3.2 Patched (2023-11-13 r85521)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.3 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.18-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] BiocNeighbors_1.20.2 knitr_1.45 BiocStyle_2.30.0
##
## loaded via a namespace (and not attached):
## [1] cli_3.6.2 rlang_1.1.2 xfun_0.41
## [4] jsonlite_1.8.8 S4Vectors_0.40.2 htmltools_0.5.7
## [7] stats4_4.3.2 sass_0.4.8 rmarkdown_2.25
## [10] grid_4.3.2 evaluate_0.23 jquerylib_0.1.4
## [13] fastmap_1.1.1 yaml_2.3.8 lifecycle_1.0.4
## [16] bookdown_0.37 BiocManager_1.30.22 compiler_4.3.2
## [19] codetools_0.2-19 Rcpp_1.0.11 BiocParallel_1.36.0
## [22] lattice_0.22-5 digest_0.6.33 R6_2.5.1
## [25] parallel_4.3.2 bslib_0.6.1 Matrix_1.6-4
## [28] tools_4.3.2 BiocGenerics_0.48.1 cachem_1.0.8